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Abstract

Understanding the variability of the environment is essential to function in everyday life. The brain must hence
take uncertainty into account when updating its internal model of the world. The basis for updating the model are
prediction errors that arise from a difference between the current model and new sensory experiences. Although
prediction error neurons have been identified in diverse brain areas, how uncertainty modulates these errors and
hence learning is, however, unclear. Here, we use a normative approach to derive how uncertainty should modulate
prediction errors and postulate that layer 2/3 neurons represent uncertainty-modulated prediction errors (UPE). We
further hypothesise that the layer 2/3 circuit calculates the UPE through the subtractive and divisive inhibition
by different inhibitory cell types. By implementing the calculation of UPEs in a microcircuit model, we show that
different cell types can compute the means and variances of the stimulus distribution. With local activity-dependent
plasticity rules, these computations can be learned context-dependently, and allow the prediction of upcoming stimuli
and their distribution. Finally, the mechanism enables an organism to optimise its learning strategy via adaptive
learning rates.

Introduction
Decades of cognitive research indicate that our brain maintains a model of the world, based on which it can make
predictions about upcoming stimuli [35, 7]. Predicting the sensory experience is useful for both perception and learning:
Perception becomes more tolerant to uncertainty and noise when sensory information and predictions are integrated [43].
Learning can happen when predictions are compared to sensory information, as the resulting prediction error indicates
how to improve the internal model. In both cases, the uncertainties (associated with both the sensory information and
the internal model) should determine how much weight we give to the sensory information relative to the predictions,
according to theoretical accounts. Behavioural and electrophysiological studies indicate that humans indeed estimate
uncertainty and adjust their behaviour accordingly [43, 58, 20, 6, 33]. The neural mechanisms underlying uncertainty
and prediction error computation are, however, less well understood. Recently, the activity of individual neurons of
layer 2/3 cortical circuits in diverse cortical areas of mouse brains has been linked to prediction errors (visual, [29, 64,
15, 1, 18], auditory [11, 30], somatosensory [2], and posterior parietal [49]). Importantly, prediction errors could be
associated with learning [27]. Prediction error neurons are embedded in neural circuits that consist of heterogeneous
cell types, most of which are inhibitory. It has been suggested that prediction error activity results from an imbalance
of excitatory and inhibitory inputs [23, 22], and that the prediction is subtracted from the sensory input [see e.g. 50,
1], possibly mediated by so-called somatostatin-positive interneurons (SSTs) [1]. How uncertainty is influencing these
computations has not yet been investigated. Prediction error neurons receive inputs from a diversity of inhibitory cell
types (Fig. 1), the role of which is not completely understood. Here, we hypothesise that one role of inhibition is to
modulate the prediction error neuron activity by uncertainty.

In this study, we use both analytical calculations and numerical simulations of rate-based circuit models with different
inhibitory cell types to study circuit mechanisms leading to uncertainty-modulated prediction errors. First, we derive that
uncertainty should divisively modulate prediction error activity and introduce uncertainty-modulated prediction errors
(UPEs). We hypothesise that layer 2/3 prediction error neurons reflect such UPEs, and that different inhibitory cell
types are involved in calculating the difference between predictions and stimuli compared to the uncertainty modulation.
Based on experimental findings, we suggest that SSTs and PVs play the respective roles. We then derive biologically
plausible plasticity rules that enable those cell types to learn the means and variances from their inputs. Notably, because
the information about the stimulus distribution is stored in the connectivity, single inhibitory cells encode the means
and variances of their inputs in a context-dependent manner. Layer 2/3 pyramidal cells in this model hence encode
uncertainty-modulated prediction errors context-dependently. We show that error neurons can additionally implement
out-of-distribution detection by amplifying large errors and reducing small errors with a nonlinear fI-curve (activation
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function). Finally, we demonstrate that UPEs effectively mediate an adjustable learning rate, which allows fast learning
in high-certainty contexts and reduces the learning rate, thus suppressing fluctuations in uncertain contexts.

Results
Normative theories suggests uncertainty-modulated prediction errors (UPEs)

In a complex, uncertain, and hence partly unpredictable world, it is impossible to avoid prediction errors. Some pre-
diction errors will be the result of this variability or noise, other prediction errors will be the result of a change in the
environment or new information. Ideally, only the latter should be used for learning, i.e., updating the current model
of the world. The challenge our brain faces is to learn from prediction errors that result from new information, and less
from prediction errors that result from noise. Hence, intuitively, if we learned that a kind of stimulus or context is very
variable (high uncertainty), then a prediction error should have only little influence on our model. Consider a situation
in which a person waits for a bus to arrive. If they learned that the bus is not reliable, another late arrival of the bus
does not surprise them and does not change their model of the bus (Fig. 1A). If, on the contrary, they learned that
the kind of stimulus or context is not very variable (low uncertainty), a prediction error should have a larger impact
on their model. For example, if they learned that buses are reliable, they will notice that the bus is late and may
use this information to update their model of the bus (Fig. 1A). This intuition of modulating prediction errors by the
uncertainty associated with the stimulus or context is supported by both behavioural studies and normative theories of
learning. Here we take the view that uncertainty is computed and represented on each level of the cortical hierarchy,
from early sensory areas to higher level brain areas, as opposed to a task-specific uncertainty estimate at the level of
decision-making in higher level brain areas (Fig. 1B) [see this review for a comparison of these two accounts: 65].
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Figure 1: Distributed uncertainty-modulated prediction error computation in cortical circuits A: A person who learned that
buses are unreliable has a prior expectation, which can be described by a wide Gaussian distribution of expected bus arrival times. When
the bus does not arrive at the scheduled time, this person is not surprised and remains calm, as everything happens according to their model
of the world. On the other hand, a person who learned that buses are punctual, which can be described by a narrow distribution of arrival
times, may notice that the bus is late and get nervous, as they expected the bus to be punctual. This person can learn from this experience.
If they always took this particular bus, and their uncertainty estimate is accurate, the prediction error could indicate that the bus schedule
changed. B: Models of uncertainty representation in cortex. Some models suggest that uncertainty is only represented in higher-level areas
concerned with decision-making (left). In contrast, we propose that uncertainty is represented at each level of the cortical hierarchy (right,
shown is the visual hierarchy as an example). C: a mouse learns the association between a sound (a) and a whisker deflection (s). The
posterior parietal cortex (PPC) receives inputs from both somatosensory and auditory cortex. D: The whisker stimulus intensities are drawn
from a Gaussian distribution with mean µ and standard deviation σ. E: Positive prediction error circuit consisting of three cell types: layer
2/3 pyramidal cells (triangle), somatostatin-positive interneurons (SST, circle) and parvalbumin-positive interneurons (PV). SSTs represent
the mean prediction, and PVs the variance. F: Negative prediction error circuit, similar to C, SST now represent the stimulus and the mean
prediction is an excitatory input.

Before we suggest how cortical circuits compute such uncertainty-modulated prediction errors, we consider the normative
solution to a simple association that a mouse can learn. The setting we consider is to predict a somatosensory stimulus
based on an auditory stimulus (Fig. 1A). The auditory stimulus a is fixed, and the subsequent somatosensory stimulus
s is variable and sampled from a Gaussian distribution (s ∼ N (µ, σ), Fig. 1B). The optimal (maximum-likelihood)
prediction is given by the mean of the stimulus distribution. Framed as an optimisation problem, the goal is to adapt
the internal model of the mean µ̂ such that the probability of observing samples s from the true distribution of whisker
deflections is maximised given this model.
Hence, stochastic gradient ascent learning on the log likelihood suggests that with each observation s, the prediction,
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corresponding to the internal model of the mean, should be updated as follows to approach the maximum likelihood
solution:

∆µ̂ ∝ ∂

∂µ̂
(logL) =

1

σ2
(s− µ̂). (1)

According to this formulation, the update for the internal model should be the prediction error scaled inversely by the
variance σ2. Therefore, we propose that prediction errors should be modulated by uncertainty.

Computation of UPEs in cortical microcircuits

How can cortical microcircuits achieve uncertainty modulation? Prediction errors can be positive or negative, but
neuronal firing rates are always positive. Because baseline firing rates are low in layer 2/3 pyramidal cells [e.g., 42],
positive and negative prediction errors were suggested to be represented by distinct neuronal populations [31], which
is in line with experimental data [26]. We, therefore, decompose the UPE into a positive UPE+ and a negative UPE−

component (Fig. 1C,D):

UPE = UPE+ −UPE− =
1

σ2
bs− µc+ − 1

σ2
bµ− sc+, (2)

where b...c+ denotes rectification at 0.
It has been suggested that error neurons compute prediction errors by subtracting the prediction from the stimulus
input (or vice versa) [1]. Inhibitory interneurons provide the subtraction, resulting in an excitation-inhibition balance
when they match [23]. To represent a UPE, error neurons need additionally be divisively modulated by the uncertainty.
Depending on synaptic properties, such as reversal potentials, inhibitory neurons can have subtractive or divisive in-
fluences on their postsynaptic targets. Therefore, we propose that an inhibitory cell type that divisively modulates
prediction error activity represents the uncertainty. We hypothesise, first, that in positive prediction error circuits, in-
hibitory interneurons with subtractive inhibitory effects represent the mean µ of the prediction. Second, we hypothesise
that inhibitory interneurons with divisive inhibitory effects represent the uncertainty σ2 of the prediction (Fig. 1C,D).
A layer 2/3 pyramidal cell that receives these sources of inhibition then reflects the uncertainty-modulated prediction
error.
More specifically, we propose that the SSTs are involved in the computation of the difference between predictions and
stimuli, as suggested before [1], and that the PVs provide the uncertainty modulation. In line with this, prediction error
neurons in layer 2/3 receive subtractive inhibition from somatostatin (SST) and divisive inhibition from parvalbumin
(PV) interneurons [63]. However, SSTs can also have divisive effects, and PVs can have subtractive effects, dependent
on circuit and postsynaptic properties [54, 38, 10].

Local inhibitory cells learn to represent the mean and the variance given an associative cue

As discussed above, how much an individual sensory input contributes to updating the internal model should depend
on the uncertainty associated with the sensory stimulus in its current context. Uncertainty estimation requires multiple
stimulus samples. Therefore, our brain needs to have a context-dependent mechanism to estimate uncertainty from
multiple past instances of the sensory input. Let us consider the simple example from above, in which a sound stimulus
represents a context with a particular amount of uncertainty. Here, we investigate whether the presentation of the sound
can elicit activity in the PVs that reflects the expected uncertainty of the situation. To investigate whether a sound can
cause activity in SSTs and PVs that reflects the mean and the variance of the whisker stimulus distribution, respectively,
we simulated a rate-based circuit model consisting of pyramidal cells and the relevant inhibitory cell types. This circuit
receives both the sound and the whisker stimuli as inputs.

SSTs learn to estimate the mean

With our circuit model, we first investigate whether SSTs can learn to represent the mean of the stimulus distribution.
In this model, SSTs receive whisker stimulus inputs s, drawn from Gaussian distributions (Fig. 2B), and an input from
a higher level representation of the sound a (which is either on or off, see Methods). The connection weight from the
sound representation to the SSTs is plastic according to a local activity-dependent plasticity rule. The aim of this rule
is to minimise the difference between the activation of the SSTs caused by the sound input (which has to be learned)
and the activation of the SSTs by the whisker stimulus (which nudges the SST activity in the right direction). The
learning rule ensures that the auditory input itself causes SSTs to fire at the desired rate. After learning, the weight
and the average SST firing rate reflect the mean of the presented whisker stimulus intensities (Fig. 2C-F).

PVs learn to estimate the variance context-dependently

We next addressed whether PVs can estimate and learn the variance locally. To estimate the variance of the whisker
deflections s, the PVs have to estimate σ2[s] = Es[(s − E[s])2] = Es[(s − µ)2]. To do so, they need to have access to
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Figure 2: SSTs learn to represent the mean context-dependently Illustration of the changes in the positive prediction error circuit.
Thicker lines denote stronger weights. B: Two different tones (red, orange) are associated with two somatosensory stimulus distributions
with different means (red: high, orange: low). C: SST firing rates (mean and std) during stimulus input. D: SST firing rates over time for
low (orange) and high (red) stimulus means. E: Weights (mean and std) from sound a to SST for different values of µ. F: SST firing rates
(mean and std) for different values of µ. Mean and std were computed over 1000 data points from timestep 9000 to 10000.
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Figure 3: PVs learn to estimate the variance context-dependently. A: Illustration of the changes in the positive prediction error
circuit. Thicker lines denote stronger weights. B: Two different tones (purple, green) are associated with two somatosensory stimulus
distributions with different variances (purple: high, green: low). C: Weights from sound a to PV over time for two different values of stimulus
variance (high: σ = 0.8 (purple), low: σ = 0.4 (green)). D: PV firing rates over time given sound input (without stimulus input) for low
(green) and high (purple) stimulus variance. E: PV firing rates (mean and std) given sound input for low and high stimulus variance. F:
PV firing rates (mean and std) during sound and stimulus input. G: Weights (mean and std) from sound a to PV for different values of σ.
H: PV firing rates (mean and std) given sound input for different values of σ2. Mean and std were computed from 150000 data points from
timestep 450000 to 600000.

both the whisker stimulus s and the mean µ. PVs in PPC respond to sensory inputs in diverse cortical areas [S1: 53]
and are inhibited by SSTs in layer 2/3, which we assumed to represent the mean. Finally, for calculating the variance,
these inputs need to be squared. PVs were shown to integrate their inputs supralinearly [8], which could help PVs to
approximately estimate the variance.

In our circuit model, we next tested whether the PVs can learn to represent the variance of an upcoming whisker stimulus
based on a context provided by an auditory input (Fig. 3A). Two different auditory inputs (Fig. 3B purple, green) are
paired with two whisker stimulus distributions that differ in their variances (green: low, purple: high). The synaptic
connection from the auditory input to the PVs is plastic according to the same local activity-dependent plasticity rule
as the connection to the SSTs. With this learning rule, the weight onto the PV becomes proportional to σ (Fig. 3C),
such that the PV firing rate becomes proportional to σ2 on average (Fig. 3D). The average PV firing rate is exactly
proportional to σ2 with a quadratic activation function φPV (x) (Fig. 3D-F,H) and monotonically increasing with σ2
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with other choices of activation functions (Suppl. Fig. 9), both when the sound input is presented alone (Fig. 3D,E,H)
or when paired with whisker stimulation (Fig. 3F). Notably, a single PV neuron is sufficient for encoding variances of
different contexts because the context-dependent σ is stored in the connection weights.

To estimate the variance, the mean needs to be subtracted from the stimulus samples. A faithful mean subtraction
is only ensured if the weights from the SSTs to the PVs (wPV,SST) match the weights from the stimuli s to the PVs
(wPV,s). The weight wPV,SST can be learned to match the weight wPV,s with a local activity-dependent plasticity rule
(see Suppl. Fig. 10 and Suppl. Methods).
The PVs can similarly estimate the uncertainty in negative prediction error circuits (Suppl. Fig. 11). In these circuits,
SSTs represent the current sensory stimulus, and the mean prediction is an excitatory input to both negative prediction
error neurons and PVs.

Calculation of the UPE in Layer 2/3 error neurons

Layer 2/3 pyramidal cell dendrites can generate NMDA and calcium spikes, which cause a nonlinear integration of inputs.
Such a nonlinear integration of inputs is convenient when the mean input changes and the current prediction differs
strongly from the new mean of the stimulus distribution. In this case, the PV firing rate will increase for larger errors and
inhibit error neurons more strongly than indicated by the learned variance estimate. The nonlinearity compensates for
this increased inhibition by PVs, such that in the end, layer 2/3 cell activity reflects an uncertainty-modulated prediction
error (Fig. 4E) in both negative (Fig. 4A) and positive (Fig. 4B) prediction error circuits. A stronger nonlinearity has
an interesting effect: error neurons elicit much larger responses to outliers than to stimuli that match the predicted
distribution—a cell-intrinsic form of out-of-distribution detection.
To ensure a comparison between the stimulus and the prediction, the weights from the SSTs to the UPE neurons need
to match the weights from the stimulus s to the UPE neuron and from the mean representation to the UPE neuron,
respectively. With inhibitory plasticity (target-based, see Suppl. Methods), the weights from the SSTs can learn to
match the incoming excitatory weights (Suppl. Fig. 12).

Interactions between representation neurons and error neurons

The theoretical framework of predictive processing includes both prediction error neurons and representation neurons,
the activity of which reflects the internal model and should hence be compared to the sensory information. To make
predictions for the activity of representation neurons, we expand our circuit model with this additional cell type. We
first show that a representation neuron R can learn a representation of the stimulus mean given inputs from L2/3 error
neurons. The representation neuron receives inputs from positive and negative prediction error neurons and from a
higher level representation of the sound a (Fig. 5A). It sends its current mean estimate to the error circuits by either
targeting the SSTs (in the positive circuit) or the pyramidal cells directly (in the negative circuit). Hence in this recur-
rent circuit, the SSTs inherit the mean representation instead of learning it. After learning, the weights from the sound
to the representation neuron and the average firing rate of this representation neuron reflects the mean of the stimulus
distribution (Fig.5B,C).

Second, we show that a circuit with prediction error neurons that exhibit NMDA spikes (as in Fig. 4) approximates an
idealised circuit, in which the PV rate perfectly represents the variance (Fig. 5D,E, see inset for comparison of the two
models). Also in this recurrent circuit, PVs learn to reflect the variance, as the weight from the sound representation a
is learned to be proportional to σ (Suppl. Fig. 13).

Predictions for different cell types

Our model makes predictions for the activity of different cell types for positive and negative prediction errors (e.g. when
a mouse receives whisker stimuli that are larger (Fig. 6A, black) or smaller (Fig. 6G, grey) than expected) in contexts
associated with different amounts of uncertainty (e.g., the high-uncertainty (purple) versus the low-uncertainty (green)
context are associated with different sounds). Our model suggests that there are two types of interneurons that pro-
vide subtractive inhibition to the prediction error neurons (presumably SST subtypes): in the positive prediction error
circuit (SST+), they signal the expected value of the whisker stimulus intensity (Fig. 6B,H). in the negative prediction
error circuit (SST−) they signal the whisker stimulus intensity (Fig. 6C,I). We further predict that interneurons that
divisively modulate prediction error neuron activity represent the uncertainty (presumably PVs). Those do not differ in
their activity between positive and negative circuits and may even be shared across the two circuits: in both positive and
negative prediction error circuits, these cells signal the variance (Fig. 6D,J). L2/3 pyramidal cells that encode prediction
errors signal uncertainty-modulated positive prediction errors (Fig. 6E) and uncertainty-modulated negative prediction
errors (Fig. 6L), respectively. Finally, the existence of so-called internal representation neurons has been proposed [31].
In our case, those neurons represent the predicted mean of the associated whisker deflections. Our model predicts that
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Figure 4: Calculation of the UPE in layer 2/3 error neurons A: Illustration of the negative prediction error circuit. B: Illustration
of the positive prediction error circuit. C: Illustration of error neuron with a nonlinear integration of inputs (k = 2). D: firing rate of the
error neuron in the negative prediction error circuit (UPE−) as a function of σ for two values of |s − µ|. E: Rates of both UPE+ and
UPE−-representing error neurons as a function of the difference between the stimulus and the mean (s−µ). F: firing rate of the error neuron
in the positive prediction error circuit (UPE+) as a function of σ for two values of |s−µ|. G: Illustration of an error neuron with a non-linear
activation function k = 2.5. H-J: same as D-F for error neurons with k = 2.5.

upon presentation of an unexpected whisker stimulus, those internal representation neurons adjust their activity to
represent the new whisker deflection depending on the variability of the associated whisker deflections: they adjust their
activity more (given equal deviations from the mean) if the associated whisker deflections are less variable (see the next
section and Fig. 7).

The following experimental results are compatible with our predictions: First, putative inhibitory neurons (narrow
spiking units) in the macaque anterior cingulate cortex increased their firing rates in periods of high uncertainty [3].
These could correspond to the PVs in our model. Second, prediction error activity seems to be indeed lower for less
predictable, and hence more uncertain, contexts: Mice trained in a predictable environment (where locomotion and
visual flow match) were compared to mice trained in an unpredictable, uncertain environment [1, they saw a video of
visual flow that was independent of their locomotion:]. Layer 2/3 activity towards mismatches in locomotion and visual
flow was lower in the mice trained in the unpredictable environment.

The effective learning rate is automatically adjusted with UPEs

To test whether UPEs can automatically adjust the effective learning rate of a downstream neural population, we
looked at two contexts that differed in uncertainty and compared how the mean representation evolves with and without
UPEs. Indeed, in a low-uncertainty setting, the mean representation can be learned faster with UPEs (in comparison to
unmodulated, Fig. 7A,C). In a high-uncertainty setting, the effective learning rate is smaller, and the mean representation
is less variable than in the unmodulated case (Fig. 7B,D). The standard deviation of the firing rate increases only
sublinearly with the standard deviation of the inputs (Fig. 7E). In summary, uncertainty-modulation of prediction
errors enables an adaptive learning rate modulation.
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neuron (rR). A weight wR,a from the higher level representation of the sound a is learned. B: Weights from sound a to R over time for
different values of µ (µ ∈ [1, 3, 5]). C: R firing rates given sound input for different values of µ (mean and std over 50000 data points from
timestep 50000 to 100000, the end of the simulation). D: Activity of the different cell types (PV: light green, R: turquiose, UPE: black)
and whisker stimulus samples (grey dots) over time. Learning the mean representation with PVs (light green) reflecting the MSE at the
beginning, which is compensated by nonlinear activation of L2/3 neurons (black). The evolution of the mean rate of neuron R (turquoise) is
similar to the perfect case in E. E: Same colour code as in D. Inset shows comparison to D. Learning the mean representation assuming PVs
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Figure 6: Cell-type specific experimentally testable predictions A: Illustration of the two experienced stimulus distributions with
different variances that are associated with two different sounds (green, purple). The presented mismatch stimulus (black) is larger than
expected (positive prediction error). B-F: Firing rates of different cell types to positive prediction errors when a sound associated with high
(purple) or low (green) uncertainty is presented. G: As in A. The presented mismatch stimulus (grey) is smaller than expected (negative
prediction error). H-L: Firing rates of different cell types to the negative mismatch when a sound associated with high (purple) or low (green)
uncertainty is presented.

Discussion
Based on normative theories, we propose that the brain uses uncertainty-modulated prediction errors. In particular, we
hypothesise that layer 2/3 prediction error neurons represent prediction errors that are inversely modulated by uncer-
tainty. Here we showed that different inhibitory cell types in layer 2/3 cortical circuits can compute means and variances
and thereby enable pyramidal cells to represent uncertainty-modulated prediction errors. We further showed that the
cells in the circuit are able to learn to predict the means and variances of their inputs with local activity-dependent
plasticity rules. Our study makes experimentally testable predictions for the activity of different cell types, PV and SST
interneurons, in particular, prediction error neurons and representation neurons. Finally, we showed that circuits with
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Figure 7: Effective learning rate is automatically adjusted with UPEs A,B: Firing rate over time of the representation neuron in
a circuit with uncertainty-modulated prediction errors (gold) and in a circuit with unmodulated errors (black) in a low uncertainty setting
(A) and a high uncertainty setting (B), C: standard deviation of the firing rate of the representation neuron in the low uncertainty setting
(inset has a different scale, outer axis scale matches the one in D), D: standard deviation of the firing rate of the representation neuron in
the high uncertainty setting. E: Standard deviation of the firing rate rR as a function of the standard deviation of the presented stimulus
distribution σs. Standard deviations were computed over 100000 data points from timestep 100000 to 200000

uncertainty-modulated prediction errors enable adaptive learning rates, resulting in fast learning when uncertainty is
low and slow learning to avoid detrimental fluctuations when uncertainty is high.

Our theory has the following notable implications: The first implication concerns the hierarchical organisation of the
brain. At each level of the hierarchy, we find similar canonical circuit motifs that receive both feedforward (from a
lower level) and feedback (from a higher level, predictive) inputs that need to be integrated. We propose that uncer-
tainty is computed on each level of the hierarchy. This enables uncertainty estimates specific to the processing level
of a particular area. Experimental evidence is so far insufficient to favour this fully Bayesian account of uncertainty
estimation over the idea that uncertainty is only computed on the level of decisions in higher level brain areas such as
the parietal cortex [32], orbitofrontal cortex [41], or prefrontal cortex [52]. Our study provides a concrete suggestion for
an implementation and, therefore, experimentally testable predictions. The Bayesian account has clear computational
advantages for task-flexibility, information integration, active sensing, and learning (see [65] for a recent review of the
two accounts). Additionally, adding uncertainty-modulated prediction errors from different hierarchical levels according
to the predictive coding model [50, 59] yields Bayes-optimal weighting of feedback and feedforward information, which
can be reconciled with human behaviour [43]. Two further important implications result from storing uncertainty in the
afferent connections to the PVs. First, this implies that the same PV cell can store different uncertainties depending on
the context, which is encoded in the pre-synaptic activation. Second, fewer PVs than pyramidal cells are required for
the mechanism, which is compatible with the 80/20 ratio of excitatory to inhibitory cells in the brain.

We claim that the uncertainty represented by PVs in our theoretical framework corresponds to expected uncertainty
that results from noise or irreducible uncertainty in the stimuli and should therefore decrease the learning rate. Another
common source of uncertainty are changes in the environment, also referred to as the unexpected uncertainty. In volatile
environments with high unexpected uncertainty, the learning rate should increase. We suggest that vasointestinal-
peptide-positive interneurons (VIPs) could be responsible for signalling the unexpected uncertainty, as they respond to
reward, punishment and surprise [47], which can be indicators of high unexpected uncertainty. They provide potent
disinhibition of pyramidal cells [45], and also inhibit PVs in layer 2/3 [46]. Hence, they could increase error activity
resulting in a larger learning signal. In general, interneurons are innervated by different kinds of neuromodulators [39,
48] and control pyramidal cell’s activity and plasticity [24, 17, 62, 61, 60]. Therefore, neuromodulators could have
powerful control over error neuron activity and hence perception and learning.

A diversity of proposals about the neural representation of uncertainty exist. For example, it has been suggested that
uncertainty is represented in single neurons by the width [14], or amplitude of their responses [40], or implicitly via
sampling [neural sampling hypothesis; 44, 5, 4], or rather than being represented by a single feature, can be decoded
from the activity of an entire population [9]. While we suggest that PVs represent uncertainty to modulate prediction
error responses, we do not claim that this is the sole representation of uncertainty in neuronal circuits.
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Uncertainty estimation is relevant for Bayes-optimal integration of different sources of information, e.g., different modal-
ities [multi-sensory integration; 12, 13] or priors and sensory information. Here, we present a circuit implementation
for weighing sensory information according to its uncertainty. It has previously been suggested that Bayes-optimal
multi-sensory integration could be achieved in single neurons [13, 25]. Our proposal is complementary to this solution
in that uncertainty-modulated errors can be forwarded to other cortical and subcortical circuits at different levels of the
hierarchy, where they can be used for inference and learning. It further allows for a context-dependent integration of
sensory inputs.

Multiple neurological disorders, such as autism spectrum disorder or schizophrenia, are associated with maladaptive
contextual uncertainty-weighting of sensory and prior information [19, 37, 57, 36, 55]. These disorders are also associ-
ated with aberrant inhibition, e.g. ASD is associated with an excitation-inhibition imbalance [51] and reduced inhibition
[21, 16]. Interestingly, PV cells, in particular chandelier PV cells, were shown to be reduced in number and synaptic
strength in ASD [28]. Our theory provides one possible explanation of how deficits in uncertainty-weighting on the
behavioural level could be linked to altered PVs on the circuit level.

Finally, uncertainty-modulated errors could advance deep hierarchical neural networks. In addition to propagating gra-
dients, propagating uncertainty may have advantages for learning. The additional information on uncertainty could
enable calculating distances between distributions, which can provide an informative and parameter-independent metric
for learning [e.g. natural gradient learning, 34].

To provide experimental predictions that are immediately testable, we suggested specific roles for SSTs and PVs, as they
can subtractively and divisively modulate pyramidal cell activity, respectively. In principle, our theory more generally
posits that any subtractive or divisive inhibition could implement the suggested computations. With the emerging data
on inhibitory cell types, subtypes of SSTs and PVs or other cell types may turn out to play the proposed role.
To compare predictions and stimuli in a subtractive manner, the encoded prediction/stimulus needs to be translated
into a direct variable code. In this framework, we assume that this can be achieved by the weight matrix defining the
synaptic connections from the neural populations representing predictions and stimuli (possibly in a population code).

Conclusion

To conclude, we proposed that prediction error activity in layer 2/3 circuits is modulated by uncertainty and that the
diversity of cell types in these circuits achieves the appropriate scaling of the prediction error activity. The proposed
model is compatible with Bayes-optimal behaviour and makes predictions for future experiments.

Methods
Derivation of the UPE

The goal is to learn µ̂ to maximise the log likelihood:

logL = log p(s|µ̂, σ) (3)

= log
N∏
n=1

N (sn|µ̂, σ) (4)

= − 1

2σ2

N∑
n=1

(sn − µ̂)2 − N

2
log(2πσ2) (5)

We consider the log likelihood for one sample s of the stimulus distribution:

log p(s|µ̂, σ) = − 1

2σ2
(s− µ̂)2 − 1

2
log(2πσ2) (6)

Stochastic gradient ascent on the log likelihood gives the update for µ̂:

∆µ̂ ∝ ∂

∂µ̂
(log p(s|µ̂, σ)) (7)

=
∂

∂µ̂

(
− 1

2σ2
(s− µ̂)2 − 1

2
log(2πσ2)

)
(8)

=
1

σ2
(s− µ̂). (9)
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Circuit model

Prediction error circuit We modelled a circuit consisting of excitatory prediction error neurons in layer 2/3, and
two inhibitory populations, corresponding to PV and SST interneurons.
Layer 2/3 pyramidal cells receive divisive inhibition from PVs [63]. We, hence, modelled the activity of prediction error
neurons as

τE
drUPE

dt
= −rUPE + φ

(
Idend

I0 + wUPE,PV rPV

)
, (10)

where φ(x) is the activation function, defined in Eq. 21, Idend = bwUPE,s rs − wUPE,SST rSSTck is the dendritic input
current to the positive prediction error neuron (see section Neuronal dynamics below for rx and for the negative predic-
tion error neuron, and Table 1 for wx). The nonlinearity in the dendrite is determined by the exponent k, which is by
default k = 2, unless otherwise specified as in Fig. 4G-J. I0 > 1 is a constant ensuring that the divisive inhibition does
not become excitatory, when σ < 1.0.

The PV firing rate is determined by the input from the sound representation (wPV+,a ra) and the whisker stimuli, from
which their mean is subtracted (wPV+,s rs−wPV+,SST+ rSST+ , where the mean is given by rSST+). The mean-subtracted
whisker stimuli serve as a target for learning the weight from the sound representation to the PV wPV+,a. The PV firing
rate evoles over time according to:

τI
drPV+

dt
= −rPV+ + φPV((1− β)wPV+,a ra + β(wPV+,s rs − wPV+,SST+ rSST+))) (11)

where φPV(x) is a rectified quadratic activation function, defined in Eq. 22.
In the positive prediction error circuit, in which the SSTs learn to represent the mean, the SST activity is determined
by

τI
drSST+

dt
= −rSST+ + φ((1− β)wSST+,a ra + βs). (12)

.

Recurrent circuit model In the recurrent circuit, shown in Fig. 5, we added an internal representation neuron
to the circuit with firing rate rR. In this circuit the SSTs inherit the mean representation from the representation
neuron instead of learning it themselves. In this recurrent circuit, the firing rate of each population ri where i ∈
[SST+,SST−,PV+,PV−,UPE+,UPE−,R] evolves over time according to the following neuronal dynamics. φ denotes a
rectified linear activation function with saturation, φPV denotes a rectified quadratic activation function with saturation,
defined in the section below.

τI
drSST+

dt
= −rSST+ + φ(wSST+,R rR), (13)

τI
drPV+

dt
= −rPV+ + φPV((1− β)wPV+,a ra + β(wPV+,s rs − wPV+,SST+ rSST+))), (14)

τE
drUPE+

dt
= −rUPE+ + φ

(
bwUPE,s rs − wUPE,SST+ rSST+ck

I0 + wUPE,PV+ rPV+

)
, (15)

τI
drSST−

dt
= −rSST− + φ(wSST−,s rs), (16)

τI
drPV−

dt
= −rPV− + φPV((1− β)wPV−,a ra + β(wPV+,R rR − wPV−,SST− rSST−))), (17)

τE
drUPE−

dt
= −rUPE− + φ

(
bwUPE,R rR − wUPE,SST− rSST−ck

I0 + wUPE,PV− rPV−

)
, (18)

τE
drR
dt

= −rR + φ(wR,a ra + wR,UPE+ rUPE+ − wR,UPE− rUPE−)). (19)

(20)

Activation functions

φ(x) =


0 if x ≤ 0

x if 0 < x < xmax

rmax if x ≥ xmax

(21)
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and

φPV(x) =


0 if x ≤ 0

x2 if 0 < x < xmax

rmax if x ≥ xmax

(22)

Parameter Value Description

wPV+,SST+

√
2−β
β weight from SST+ to PV+

wPV+,s

√
2−β
β weight from s to PV+

wPV−,SST−

√
2−β
β weight from SST− to PV−

wPV−,R

√
2−β
β weight from R to PV−

wSST+,R 1.0 weight from R to SST+

wSST−,s 1.0 weight from s to SST−

wUPE+,SST+ 1.0 weight from SST+ to UPE+

wUPE+,s 1.0 weight from s to UPE+

wUPE−,R 1.0 weight from R to UPE−

wUPE−,SST− 1.0 weight from SST− to UPE−

wR,UPE+ 0.1(1.0) weight from UPE+ to R (Fig. 6)

wR,UPE− 0.1(1.0) weight from UPE− to R (Fig. 6)
xmax 20 limits neuronal activity
β 0.1 nudging parameter

Table 1: Parameters of the network.

Inputs The inputs to the circuit were the higher level representation of the sound a, which was either on (1.0) or off
(0.0), and N samples from the Gaussian distribution of whisker stimulus intensities. Each whisker stimulus intensity
was presented for D timesteps (see Table 2).

Parameter Value Description
a {0.0, 1.0} auditory stimulus (on/off)
s ∼ N (µ, σ) somatosensory (whisker) stimulus
N 1000-20000 number of whisker stimulus samples
D {10, 100} stimulus duration (Figs. 1-5,7; Fig. 7)

Table 2: Inputs.

Synaptic dynamics / Plasticity rules Synapses from the higher level representation of the sound a to the SSTs,
PVs, and to R were plastic according to the following activity-dependent plasticity rules [56].

∆wSST,a = ηSST(rSST − φ(wSST,ara))ra, (23)

∆wPV,a = ηPV(rPV − φPV(wPV,ara))ra, (24)

∆wR,a = ηR(rR − φ(wR,ara))ra, (25)

(26)

where ηPV = 0.01ηR.

Explanation of the synaptic dynamics The connection weight from the sound representation to the SSTs wSST,a

is plastic according to the following local activity-dependent plasticity rule [56]:

∆wSST,a = η(rSST − φ(wSST,a ra)) ra, (27)
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where η is the learning rate, ra is the pre-synaptic firing rate, rSST is the post-synaptic firing rate of the SSTs, φ(x) is
a rectified linear activation function of the SSTs, and the SST activity is determined by

τI
drSST
dt

= −rSST + φ((1− β)wSST,a ra + βs). (28)

The SST activity is influenced (nudged with a factor β) by the somatosensory stimuli s, which provide targets for the
desired SST activity. The learning rule ensures that the auditory input alone causes SSTs to fire at their target activity.
As in the original proposal [56], the terms in the learning rule can be mapped to local neuronal variables, which could
be represented by dendritic (wSST,a ra) and somatic (rSST) activity.

The connection weight from the sound representation to the PVs wPV,a is plastic according to the same local activity-
dependent plasticity rule as the SSTs [56]:

∆wPV,a = η(rPV − φPV(wPV,a ra)) ra. (29)

The weight from the sound representation to the PV wPV+,a approaches σ (instead of µ as the weight to the SSTs),
because the PV activity is a function of the mean-subtracted whisker stimuli (instead of the whisker stimuli as the SST
activity), and for a Gaussian-distributed stimulus s ∼ N (s|µ, σ), it holds that E[bs− µc+] ∝ σ.

2

rPV(a)
wPV,a

10 2 10 1 100
0.0

0.5

r P
V
(a
)

0.0

0.5

w
PV
,a

Figure 8: For small β, and ws =
√

2−β
β

, the weight from a to PV approaches σ and the PV firing rate approaches σ2.

Estimating the variance correctly The PVs estimate the variance of the sensory input from the variance of the
teaching input (s− µ), which nudges the membrane potential of the PVs with a nudging factor β. The nudging factor
reduces the effective variance of the teaching input, such that in order to correctly estimate the variance, this reduction
needs to be compensated by larger weights from the SSTs to the PVs (wPV,SST) and from the sensory input to the PVs
(wPV,s). To determine how strong the weights ws = wPV,SST = wPV,s need to be to compensate for the downscaling of
the input variance by β, we require that E[wa]2 = σ2 when the average weight change E[∆w] = 0. The learning rule for
w is as follows:

∆w = η[rPV − φ(wa)]a (30)

= η[φ((1− β)wa+ βwss̃)− φ(wa)]a (31)

(32)

where rPV = φ((1− β)wa+ βwss̃) and s̃ = (s− µ) ∼ N (0, σ).
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Using that φ(u) = u2, the average weight change becomes:

E[∆w] = E[((1− β)2w2a2 + β2w2
s s̃

2 + 2(1− β)waβwss̃− w2a2)a] (33)

= E[((1 + β2 − 2β)w2a2 + β2w2
s s̃

2 + 2(1− β)waβwss̃− w2a2)a] | E[s̃] = 0 (34)

= E[(β2w2a2 − 2βw2a2 + β2w2
s s̃

2)a] (35)

= E[β(βw2a2 − 2w2a2 + βw2
s s̃

2)a] (36)

= β((β − 2)E[(wa)2] + βw2
sE[s̃2])a | E[s̃2] = E[(s− µ)2] = σ2 (37)

= β((β − 2)E[(wa)2] + βw2
sσ

2)a (38)

(39)

Given our objective E[(wa)2] = σ2, we can write:

E[∆w] = β((β − 2)σ2 + βw2
sσ

2)a (40)

(41)

Then for E[∆w] = 0:

0 = β − 2 + βw2
s (42)

⇒ ws =

√
2− β
β

(43)

Here, we assumed that φ(u) = u2 instead of φ(u) = buc2. To test how well this approximation holds, we simulated the
circuit for different values of β and hence ws, and plotted the PV firing rate rPV(a) given the sound input a and the
weight from a to PV, wPV,a, for different values of β (Fig. 8). This analysis shows that the approximation holds for
small β up to a value of β = 0.2.

Parameter Value Description
ηSST 0.1 learning rate for wSST+/−,a

ηPV 0.01 ∗ ηR = 0.001 learning rate for wPV+/−,a

ηR 0.1 learning rate for wR,a

winitial
SST,a 0.01 initial value for wSST+/−,a

winitial
PV,a 0.01 initial value for wPV+/−,a

winitial
R,a 0.01 initial value for wR,a

Table 3: Parameters of the plasticity rules.

Simulation We initialised the circuit with the initial weight configuration in Tables 1 and 3 and neural firing rates
were initialised to be 0 (ri(0) = 0 with i ∈ [SST+,SST−,PV+,PV−,UPE+,UPE−,R]). We then paired a constant tone
input with N samples from the whisker stimulus distribution, the parameters of which we varied and are indicated in
each Figure. Each whisker stimulus intensity was presented for D timesteps (see Table 2). All simulations were written
in Python. Differential equations were numerically integrated with a time step of dt = 0.1.

Parameter Value Description
T N ∗D simulation time
dt 0.1 simulation time step
τE 1.0 excitatory membrane time constant
τI 1.0 inhibitory membrane time constant

Table 4: Parameters of simulations in Figs. 2-5.

Eliciting responses to mismatches (Fig. 4 and Fig. 6) We first trained the circuit with 10000 stimulus samples
to learn the variances in the a-to-PV weights. Then we presented different mismatch stimuli to calculate the error
magnitude for each mismatch of magnitude s− µ.
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Parameter Value Description
T N ∗D simulation time
dt 0.1 simulation time step
τE 10.0 excitatory membrane time constant
τI 2.0 inhibitory membrane time constant
ηR 0.01 learning rate of wR,A

Table 5: Parameters of the simulation in Fig. 6.

Comparing the UPE circuit with an unmodulated circuit (Fig. 7) To ensure a fair comparison, the unmodu-
lated control has an effective learning rate that is the mean of the two effective learning rates in the uncertainty-modulated
case.
.
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Supplementary Information
Supplementary Methods

Synaptic dynamics/plasticity rules

∆wPV+,SST+ = ηPV(wPV+,srs − wPV+,SST+rSST+)rSST+ , (44)

∆wPV−,SST− = ηPV(wPV−,RrR − wPV−,SST−rSST−)rSST− , (45)

∆wUPE+,SST+ = ηUPE(wUPE+,rsrs − wUPE+,SST+rSST+)rSST+ , (46)

∆wUPE+,SST− = ηUPE(wUPE−,RrR − wUPE−,SST−rSST−)rSST− , (47)

(48)

Different choice of supralinear activation function for PV
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Figure 9: Learning the variance in the positive prediction error circuit with PVs with a power activation function (exponent = 3.0). A and
B are analogous to Fig. 3G and H, and the circuit is the same except that the activation function of the PVs (φPV (x)) has an exponent of
3.0 instead of 2.0. C and D are zoomed-out versions of A and B.

Plastic weights from SST to PV learn to match weights from s to PV
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Figure 10: With inhibitory plasticity, weights from SST to PV can be learned. This figure shows that the weight from SST to PV (wPV,SST)
is equal to the weight from s to PV (wPV,s). The inhibitory plasticity rule is described in the Supplementary Methods.
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PVs learn the variance in the negative prediction error circuit
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Figure 11: PVs learn to represent the variance given an associative cue in the negative prediction error circuit. A: Illustration
of the changes in the negative prediction error circuit. Thicker lines denote stronger weights. B: Two different tones (purple, green) are
associated with two somatosensory stimulus distributions with different variances (purple: high, green: low). C: Weights from sound a to
PV over time for two different values of stimulus variance (high: σ = 0.8 (purple), low: σ = 0.4 (green)). D: PV firing rates over time given
sound input (without stimulus input) for low (green) and high (purple) stimulus variance. E: PV firing rates (mean and std) given sound
input for low and high stimulus variance. F: PV firing rates (mean and std) during sound and stimulus input. G: Weights from sound a to
PV for different values of σ (mean and std). H: PV firing rates given sound input for different values of σ2 (mean and std).

Learning the weights from the SSTs to the prediction error neurons
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Figure 12: Learning the weights from the SSTs to the UPE neurons. This figure shows that the weights from the SSTs to the UPEs in
both the positive (left) and the negative (right) prediction error circuit can be learned with inhibitory plasticity to match the weights from
the stimulus representation s to the UPEs. The inhibitory plasticity rule is described in the supplementary methods.
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PV activity is proportional to the variance in the recurrent circuit
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Figure 13: PV firing rates are proportional to the variance in the recurrent circuit model. Weights from a to PV as a function of σ in the
positive (A) and negative (C) prediction error subcircuit. PV firing rates as a function of σ2 in the positive (B) and negative (D) prediction
error circuit.
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