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Abstract

How sensory information is interpreted depends on context. Yet, how context shapes sensory processing in the brain,
remains elusive. To investigate this question we combined computational modeling and in vivo functional imaging of
cortical neurons in mice during reversal learning of a tactile sensory discrimination task. During learning, layer 2/3
somatosensory neurons enhanced their response to reward-predictive stimuli, explainable as gain amplification from
apical dendrites. Reward-prediction errors were reduced and confidence in the outcome prediction increased. Upon
rule-reversal, the lateral orbitofrontal cortex, through disinhibitory VIP interneurons, encoded a context-prediction
error signaling a loss of confidence. The hierarchy of prediction errors in cortical areas is mirrored in top-down signals
modulating apical activity in the primary sensory cortex. Our model explains how contextual changes are detected
in the brain and how errors in different cortical regions interact to reshape and update the sensory representation.

Keywords: top-down modulation, representation learning, lateral orbitofrontal cortex, reversal learning, apical
amplification, primary somatosensory cortex, continual learning, non-stationary environment, interneurons, disinhibition,
online machine learning

The theory of reward-prediction errors with their neuronal correlates represents a fundamental milestone for
behavioural neuroscience [1]. It forms the foundation for reinforcement learning in the brain and inspired develop-
ments in artificial intelligence [2, 3]. Making reward predictions in complex environments, however, also requires the
correct identification of ongoing contexts. For one context, the rewards in an environment might follow certain rules;
in another context these rules might be altered, hence altering the reward contingency. Yet, it is not clear – from a
normative point of view – how context is represented, how a change in context is even detected, and how a puta-
tive context change can reshape computation. Although the ultimate goal of reward-based learning lies in minimizing
reward-prediction errors and selecting actions to maximize reward, computing context-prediction errors and reducing
them constitutes an essential intermediary goal. A complete model of the brain should therefore explain how reward-
and context-prediction errors jointly modulate decision making from the early steps of sensory processing.

Being able to extract a broad range of features from the sensory world is crucial to make accurate decisions in
varying contexts. However, having a rich sensory representation also enlarges the search space from which to identify
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behaviorally relevant information. The brain addresses this dilemma by selectively amplifying task-relevant sensory
responses [4–6] (Fig. 1a). While the origin of these enhanced responses in the sensory cortex is not fully understood,
they can be modeled as multiplicative gain amplification [7]. Sensory response amplification depends on context, which
indicates a top-down attentional modulation rather than a bottom-up adaptation [8–10]. Apical dendrites of pyramidal
neurons receive top-down afferents [11], multiplicatively modulate the firing rate [12, 13] and acquire strengthened
responses to stimuli that predict upcoming salient outcomes [14, 15]. Therefore, apical dendrites are suspected to
selectively amplify neural responses in order to increase the internal salience of task-relevant sensory stimuli [16, 17].

The amplification of a select subset of features, however, can have further drawbacks. A once advantageous salience
allocation can become inadequate after a change in context. Therefore, detecting such contextual changes becomes
crucial for the adaptability of behavior. In animals, such scenarios are studied by means of reversal learning tasks [18].
Most prominently, lateral orbitofrontal cortex (lOFC) has been shown to respond to changes in reward contingency
and plays a critical role in flexibly adjusting behavior [18, 19]. Further work has shown that the lOFC can inhibit
apical dendrites of pyramidal neurons in the visual cortex (V1) via somatostatin-expressing (SST) interneurons [20],
which could be a potential mechanism to revert acquired apical amplification patterns that are no longer appropriate
after a change in context.

Here, we measured functional responses from S1 and lOFC neurons of mice during reversal learning and integrated
our findings into a computational model explaining how the lOFC can support behavioral flexibility by actively
reshaping sensory representations. We examined the robustness of online reinforcement learning in the presence of a
large set of irrelevant stimuli and show that the reward-guided apical gain amplification of sensory pyramidal neurons
enhanced performance. We show that, upon rule reversal, lOFC signals a context-prediction error during the stimulus
presentation as a consequence of observing highly unexpected outcomes. The context-prediction error inhibits the
sensory top-down amplification learned during the previous rule, and allows for the behavioral adaptation to the new
rule. Finally, we also demonstrate that silencing vasoactive intestinal polypeptide-expressing (VIP) interneurons in
the lOFC impairs rule-switching. Taken together, our results show how the brain builds context-dependent sensory
representations to support behavioral adaptation in non-stationary environments, and provide new perspectives on
the roles of distinct inhibitory mechanisms in that process.

Results

Value-based apical amplification of sensory representations in S1

Learning from large sensory representations containing few task-relevant and many task-irrelevant neurons poses a
challenge. The task-irrelevant neurons will act as distractors and obfuscate which signals to base decisions on. This
applies at a high level, e.g., animals perceiving with multiple senses to navigate complex environments. However this
issue grows considerably as the brain extracts diverse features from each sensory stimulus (Fig. 1a). We replicated
this problem for a rewarded go/no-go sensory discrimination task, where action selection was learned with online
policy gradient. The occurrence of a stimulus s1 could lead to a reward if a specific action (go) was performed, and
another stimulus s2 led to a punishment that could be avoided by not performing that go-action (Fig. 1b). The sensory
representation was made of rate-based neurons with two neurons each responding to a stimulus (s1 or s2) and varying
numbers of randomly activated distractor neurons (Fig. 1c). In addition, the neuronal activity was modulated by a
multiplicative gain. Different simulations varied regarding the gain applied on the s1 and s2 selective neurons, while
the gains of the distractor neurons remained fixed to 1 (Fig. 1d). For equal gains, the task was learned consistently
in the presence of few distractors, but the learning performance began to falter around 100 distractor neurons (Fig.
1e). Differences in gain of the task-relevant neurons compared to the distractors also affected learning, i.e., weak
task-relevant signals could spoil the performance. However, the performance degradation caused by an overwhelming
number of distractors could be rescued by increasing the gain of the s1 and s2 stimuli encoding neurons (Fig. 1f).

In summary, sensory representations can be improved by amplifying the response of task-relevant sensory neurons,
which experimentally also correlates with behavioral performance [5, 21]. At the same time, apical activity has been
shown to increase the somatic excitability [22]; learning enhances the apical response to behaviorally relevant stimuli
[14, 15]; and adaptation in apical dendrites of sensory neurons precede behavioral learning [23]. We, therefore, postu-
lated that changes in sensory responses promoting task-relevant information could be modeled as top-down excitation
of apical dendrites that multiplicatively amplify bottom-up basal activations (Fig. 1d and Extended Data Fig. S1a).
The guiding principles underlying this conditioning of the sensory representation remain unclear, but the enhancement
of responses to stimuli that are predictive of future rewards has been reported with high consistency [18, 21, 24–26]
(Extended Data Fig. S2a).

We replicate the experimental observations by modeling pyramidal neurons that modulate bottom-up sensory
inputs with top-down signals encoding the stimulus-reward association (Fig. 1d). A reward prediction network derives
neuron-specific values that measure whether bottom-up inputs are associated with future rewards (Fig. 1g). The
sensory neurons are then amplified by shaping apical excitation according to this neuron-specific value, which encodes
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Fig. 1 Value-based apical gain modulation amplifies task-relevant sensory signals. a, Sensory representations contain infor-
mation about many sensory inputs and selectively amplify features that are most important for behavioral decisions. b, Structure of the
go/no-go sensory discrimination task with each combination of stimulus and action leading to an outcome (Hit, receive reward; CR, correct
rejection, omission of punishment; FA, false alarm, receive punishment; Miss, omission of reward). c, Bottom-up inputs to the sensory pyra-
midal neurons. The go (s1) and no-go (s2) stimuli drive separate neurons. Task-irrelevant features drive distractor neurons. d, Schematic
showing how top-down afferents onto pyramidal neurons multiplicatively modulate the gain of the bottom-up input. In the model, the
apical input reflects the neuron-specific value and the bottom-up input has a fixed selectivity. e, Performance of the online policy gradi-
ent algorithm without gain adaptation on a go/no-go sensory discrimination task depending on the number of distractor neurons and on
the gain of the two sensory neurons selective for either s1 or s2. The gain of the distractor neurons was always set to 1. Performance was
evaluated after 600 trials of training. Each black dot corresponds to the average from 64 different pseudorandom initializations. f, Hori-
zontal slice of panel e with 128 distractor neurons and different fixed gains for the go and no-go stimulus encoding neurons. The grey area
shows the standard deviation. g, Computational model of sensory processing. Bottom-up sensory stimuli drive the pyramidal neurons of
the sensory representation. The bottom-up activation is amplified by top-down apical afferents conveying neuron-specific value. The val-
ues, derived from a reward prediction network, measure how much the sensory neuron activities are associated with future rewards. The
sensory pyramidal neurons project both to the reward prediction network and to a policy network that selects actions. h, Performance
achieved with and without adaptive gain modulation depending on the number of distractor neurons. The values without gain adaptation
correspond to the vertical slice in panel e. i, As learning progressed, the apical gain of the go-stimulus (s1) selective neuron increased,
relative to the average gain of the other neurons, see equation (12). The mean and the standard error of this relative gain Γap

s1 are shown
for simulations with different numbers of distractors across the first 100 trials. With greater numbers of distractor neurons, the difficulty
to identify reward-associated neurons increases, thus Γap

s1 requires more trials to rise.

the expected relevance of each neuron for predicting future rewards (see Supplementary Equations 2). The simulated
learning performances confirm that reward-guided apical gain modulation renders the system more robust to the
presence of task-irrelevant stimuli(Fig. 1h). The resulting apical salience map increases the responses of sensory neurons
according to their reward-association (Fig. 1i), and this in turn improves the sensory representation for action selection.
Hence, top-down projections onto apical dendrites of sensory neurons support behavioral learning by amplifying
task-relevant information and increasing the signal-to-noise ratio (Extended Data Fig. S3).
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Lateral OFC signals a context-prediction error at stimulus time

So far, the model made use of reward predictions in a fixed stationary context. Next, we show how tracking the second
order statistics of reward-prediction errors is helpful in non-stationary environments, e.g., in case the rule of the go/no-
go task is reversed (Fig. 2a). When being exposed to a new task, animals may be agnostic about their expectations,
and any outcome can be considered equally uncertain. However, as an internal model of the task is constructed and
the expected outcomes become more and more accurate, the uncertainty in the reward prediction decreases. At the
same time, any deviation from the predicted outcome becomes increasingly unexpected. How expected or unexpected
an outcome is, can be captured by using an estimate σ̂2 of the squared reward-prediction error σ2. The estimate
σ̂2 evaluates the variance unexplained by the model (see Supplementary Equations 4) and can be interpreted as
the expected uncertainty about reward predictions (see Supplementary Equations 3). As learning progresses and the
reward predictions Q̂ improve, σ̂2 will decrease (Fig. 2b). In consequence, a reward after the go-stimulus (s1) will be
predicted with increasing confidence, while any different outcome becomes less and less expected.

The confidence c in the reward prediction is defined as a monotonically decreasing function of the prediction
uncertainty σ̂2, see equation (7). It is an estimate of the squared fraction of variance explained (FVE2). The higher
the FVE, i.e. the more variance in the observed outcomes can be predicted by the model, the higher is the confidence
c in that model and its outcome predictions. After learning, if a rule reversal takes place (Fig. 2a), highly unexpected
outcomes will be observed (Fig. 2b). This leads to an increase in the uncertainty (∆σ̂2 > 0), and hence a decrease in
the confidence about the prediction (∆c < 0, Fig. 2c). The confidence loss (CL) provides an internal signal, suggesting
to the animal that a change of context has occurred. The CL is elicited when unexpected outcomes are observed.
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Fig. 2 Lateral orbitofrontal cortex signals a context-prediction error at stimulus time. a, Go/no-go sensory discrimination
task with rule reversal. Top: schematic of experimental setup, trial structure and possible outcome types (Hit, CR, FA, Miss). Bottom: after
animals show stable expert discriminatory performance (learning), stimulus-outcome contingencies are reversed (reversal). b, Evolution

of the reward prediction Q̂ depending on the sensory representation z and the lick-action aL. Top: the values Q̂(aL, z) are shown across
trials for the rewarded go-stimulus (s1) and for the punished no-go-stimulus (s2). Bottom: The estimate of the squared reward-prediction
error (σ̂2) tracks the uncertainty of the reward prediction. Right: Estimated probability densities for the predicted reward as Gaussian

distributions parameterized by the mean Q̂(aL, z) and variance σ̂2 for either stimulus (s1 or s2). As learning progresses from the naive
(light blue) to the expert stage (dark blue), the estimated densities become more accurate and narrow. Colored arrows indicate unexpected
outcomes in case of rule reversal, such as punishment following s1 (red) or reward following s2 (green). c, Top: Prediction confidence (black)
and context-prediction error (CPE, green) during the stimulus window, see equations 7-9). Bottom: The confidence loss (CL) triggered by
unexpected outcomes. The CL entrains the CPE to appear before the outcome is observed (purple ‘Reinforcer’ arrow pointing backwards in
trial time). d, Left: schematic and photograph of LOFC cannula and GRIN lens implantation. Right, two-photon fluorescence image of L2/3
lOFC neurons imaged through the GRIN lens and extracted traces of example cells and neuropil (NP). Traces of four concatenated example
trials (whole trial) and corresponding trial outcome from an expert animal (LE). e, Box plots of Ca2+ transient amplitudes (∆F/F0) from
L2/3 lOFC neurons in the stimulus window during different learning phases of the reversal learning task (39, 122, 166, 170 neurons from 3
mice during the LN, LE, RN, RE phase respectively). The phases correspond to learning naive (LN), learning expert (LE), reversal naive
(RN) and reversal expert (RE). Statistical differences were tested with two-tailed, independent samples T-tests with Bonferroni corrections,
the asterisks indicate whether the p-values were > 0.05 (n.s), ≤ 0.05 (*), ≤ 0.01 (**) or ≤ 0.001 (***). This convention is maintained
throughout the manuscript. f, Same as in panel e, for the simulated context-prediction error. Note: panels e and f use pictograms of a
mouse head and neuron model to distinguish experimental and simulation data. This convention is maintained throughout the manuscript.
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Yet, to affect behavior, the knowledge that the context has changed should take effect earlier within trial time, when
sensory signals are processed and actions are decided. Neurons in the lOFC have been shown to respond to unexpected
outcomes following a rule reversal [18, 27, 28]. We therefore explored whether lOFC also produced temporally advanced
anticipatory signals informing that a rule reversal has occurred.

Analogously to the reward-predictor used to model top-down afferents of sensory neurons, we modeled the lOFC
activity to become predictive for the confidence loss triggered by unexpected outcomes. In consequence, the anticipatory
signal in the stimulus window predicts the confidence loss in the outcome window. Since it is reinforced by steady
CL from successive unexpected outcomes, we refer to this temporal predictor of the CL as context-prediction error
(CPE). Because the CPE is predictive for the CL that is itself based on the second-order statistics (σ̂2) of the reward-
prediction error, the CPE can be viewed as a second-order reward-prediction error. Accordingly, within few trials
following a rule reversal, the CPE produced a robust internal signal of a contextual change — in this case of the fact
that the rule was switched (Fig. 2c). To test our model we then trained mice in a go/no-go texture discrimination task
containing a rule reversal (Fig. 2a), and recorded the activity of L2/3 lOFC neurons with calcium imaging (Fig. 2d).
We found that the lOFC response during the stimulus window increases in the trials closely following reversal, which
is in accordance with a neural population encoding the CPE (Fig. 2f). We will therefore study how the lOFC might
influence learning and behavior by modeling the lOFC population with the CPE.

Lateral OFC cancels top-down amplification in S1 after rule reversal

In scenarios where the context can change, the amplification of sensory features conditioned during a given context can
be ill-suited in another context. Since lOFC neurons can signal changes in context prospectively at stimulus time (Fig.
2e), it raises the question of whether the lOFC could help to reshape top-down amplification at the apical dendrites.
SST interneurons are prominent inhibitors of apical dendrites [29, 30]. Experimental findings have also shown that
post-learning reactivation of SST could restore näıve-like activity patterns [31] and that lOFC can inhibit apical
dendrites of pyramidal neurons via SST interneurons in V1 [20]. We therefore presume that lOFC projects to SST
interneurons in S1 to counteract context-dependent top-down excitation (Fig. 3a and Extended Data Fig. S5). Doing
so, strong lOFC responses during the stimulus windows following a rule reversal will inhibit previously conditioned
sensory amplification patterns and allow the new reward-associated stimulus to be amplified.

Our Ca2+-imaging data of L2/3 excitatory S1 neurons shows that the enhanced response to the rewarded stimulus
s1, acquired during learning of the first rule, moves to the newly rewarded stimulus s2 after learning the reversed
rule (Fig. 3b). When chemogenically silencing lOFC neurons after the rule reversal (via CNO-activated hM4Di, see
Methods), no significantly enhanced response to the newly rewarded stimulus s2 was developed (Fig. 3b). The evolution
of the S1 response and its dependence on lOFC could be reproduced in the model by including a lOFC feedback to
SST interneurons of the sensory cortex (Fig. 3c). With this inhibitory feedback, the selective top-down amplification
of reward-predictive sensory stimuli can be reverted by lOFC, provided that a context change leads to a strong
context-prediction error (Fig. 3d).

Besides measuring the S1 responses, we also compared the performances achieved by the model with and without
lOFC after reversal. We found that the model without lOFC failed to adapt to the reversed rule (Fig. 3e). However,
if the context-prediction error from lOFC drives apical inhibition in S1, the incorrect amplification of sensory neurons
from bygone contexts was prevented. In consequence, by unbiasing the sensory representation, lOFC allows the reversed
rule to be learned almost as fast as the original rule (Fig. 3f). Interestingly, animals with silenced lOFC can eventually
adapt to the reversed rule after significantly more trials [18], which the model also reproduced (Fig. 3g).

Context-prediction errors support learning for multiple reversals

Besides unbiasing the sensory representation, inhibiting the top-down sensory amplification upon rule reversal also
directly affects action selection (Fig. 4a). The conditioned behavior is inhibited at the source, by reducing the response
to the stimuli responsible for triggering the behaviour in the first place. At the same time, reducing sensory neuron
responses also decreases the plasticity of their efferent synapses (see Supplementary Equations 1). As a consequence,
the synapses encoding the policy for the original rule are protected from degradation. Therefore, behavior can be
adapted to the reversed rule, while still preserving the synaptic weights encoding the sensorimotor mapping for the
original rule (Fig. 4c and Extended Data Fig. S7). Upon a second rule reversal, we observe that the behavior adjusts
faster than during the first reversal (Fig. 4d). This can be attributed to the protection of the sensorimotor mapping
acquired in the first learning stage. Indeed, behavioral adaptation requires both an appropriate sensorimotor mapping
and sensory top-down modulation [6] (Fig. 4a). As only the latter needs to be adjusted after the second reversal
(Fig. 4e), the overall behavioral adaptation can occur more rapidly.

By preserving the sensorimotor mappings of prior rules, the appropriate behavior for these rules can be restored,
merely by recovering the top-down sensory amplification pattern. Until now we considered top-down excitation of
sensory neurons to be driven by a single, fixed context representation vector. Given the single context representation,
the top-down projections had to relearn the contextual value of each neuron upon each rule switch (Fig. 4c). To that
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Box plots of Ca2+ transient amplitudes (∆F/F0) of L2/3 S1 neurons during stimulus presentation (s1 or s2) for correct trials from WT
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sensory neurons,

∑
i zi, in response to stimulus 1 (s1) and stimulus 2 (s2) for intact and silenced lOFC. d, Functional schematic of panel

a, showing the mirror-symmetry between the prediction of reward and the prediction of confidence loss. The contribution of a sensory
neuron to the prediction of the future reward determines its neuron-specific value (blue). The context-prediction error (green) is a signal
anticipating a confidence loss, which hence counteracts the reward-guided sensory amplification ahead of the outcome. e, Final performance
(after 600 trials, RE) with and without lOFC for the original and for the reversed rule. The pie charts show the fraction of agents that
reached expert performance. 64 pseudorandom initializations were simulated for each condition. f, Cumulative distributions of simulated
agents that reached expert performance (85% correct) along the progression of trials; either with (left) or without (right) lOFC-mediated
apical inhibition via SST. g, Performance traces of the agents with and without lOFC during reversal learning. Bottom: box plots show
the distributions of the number of trials necessary to become expert for the original or the reversed rule.

end, the synaptic weights exciting formerly amplified neurons had to be weakened; and different synapses had to be
strengthened. An alternative strategy is to modify the sensory amplification by switching the context representation
while maintaining the synaptic weights that transmit the top-down excitation [13] (Fig. 4f). It has been shown that
sensory amplification is context-dependent [5, 21, 32, 33] and that animals can develop dedicated task-representing
neurons [34]. Furthermore, activity in the human lOFC has been suggested to represent a shift in context representation
[27]. We, therefore, explored whether this principle would yield computational benefits. For that, we simulated agents
with two possible context representations, each consisting of a two-dimensional one-hot vector and projecting to
the apical dendrites of the sensory neurons. The lOFC activity encoding the context-prediction error was then used
to trigger a switch between context representations (Fig. 4f). The capacity to represent different contexts and to
switch between these representations significantly improved behavioral adaptation following multiple rule reversals
(Fig. 4g). Indeed, when a rule had already been experienced previously, not only were the stimulus-to-action projections
already learned (as in the single-context model), but also the top-down excitation weights onto the sensory neurons
(Extended Data Fig. S8a). While we implemented our two-context model to also include lOFC to sensory cortex SST
interneuron feedback, this was somewhat redundant as the context-representation switch prevented the inadequate
sensory amplification from the prior rule. Nonetheless, SST interneuron activation could provide a necessary inhibition
in case the new context-representation was established and had yet to be formed.

VIP-mediated disinhibition reinforces anticipatory sensory signals

We showed how top-down signals such as the context-prediction error could improve sensory processing to accommo-
date different behavioral contexts. Nonetheless, while we provided a mathematical framework, how the lOFC learns
to generate the context-prediction error signal during the stimulus window is still unclear. In general, through the
accumulation of experience across trials, anticipatory responses build up ahead in time from the reinforcers they learn
to predict. While a variety of such predictive signals can be observed in the cortex [35, 36], little is known about the
underlying microcircuits and neural mechanisms that generate them. Accumulating evidence shows that VIP-mediated
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Fig. 4 The context-prediction error reduces adaptation time for multiple reversals. a, The two main components involved in
behavioral learning: rapidly adapting top-down modulation of the sensory representation depending on the context (yellow), and slower
adapting sensorimotor associations π (green). b, Performance traces of 4 mice during two consecutive rule reversals, where the second
one reverts back to the original rule. c, Top: Average performance of the agents for two sequential reversals. Middle: Evolution of the
relative gain, see equation (12), of the go-stimulus-selective neurons, which corresponds to the s1-selective neuron when the original rule
applies (dashed) and to the s2-selective neuron for the reversed rule (dotted). After each reversal, the top-down inhibition rapidly erases
the relative gain. Next, the π-weight represents the synaptic strength of the weight in the policy network connecting from the go-stimulus-
selective neuron to the go-action neuron. After potentiating the synaptic weight between the s1 neuron and the go action during Learning,
it is maintained throughout Reversal 1, while the synaptic weight between the s2 neuron and the go action is strengthened. d, Number of
sessions needed for each of the 4 mice to reach expertise for Learning, Reversal 1, and Reversal 2 (left) and the same in trials for the model
(right). e, Qualitative illustration of the steps that led to faster adaptation after the second reversal. Early learning: amplification of the
s1-selective sensory neuron. Learning: increasing the synaptic weight from the s1-selective neuron to the go-action neuron. Reversal 1: top-
down sensory amplification is shifted from the s1 to the s2-selective sensory neuron, and the weight from the s2-neuron to the go-action
neuron is strengthened. Reversal 2: synaptic weights from the s1-selective neuron to the go-action neuron remain strengthened, only the
sensory modulation needs adjusting. f, Model in which two different contexts can be represented and where the context representation xap

can be switched by lOFC activity (context-prediction error). Allowing the sensory modulation to be adapted by changing xap removes the
need to re-learn the top-down modulation weights in the case when a previously learned context reappears. g, Number of trials necessary
to reach expert performance with a single context representation (grey) and with two context representations (brown) for five sequential
rule reversals. Statistical differences were tested with two-tailed, independent samples T-tests with Bonferroni correction.

disinhibition [37–39] may play a critical role in gating associative learning in the olfactory [40], auditory [41], visual
[42, 43] and somatosensory cortex [44], and hence could be part of a cortex-wide mechanism [45]. Hence, VIP interneu-
rons could be responsible for signaling a predictive target for pyramidal neurons. In different cortical regions they
are recruited by reinforcers such as reward and punishment [46]. Applied to our model of lOFC, we therefore suggest
that lOFC VIP interneurons could convey the confidence loss (CL) produced by unexpected outcomes (Fig. 3d). In
consequence the inhibition of lOFC VIP neurons could be modeled by setting CL = 0 in our model.

We pharmacogenetically silenced the activity of VIP interneurons in VIP-cre mice by injecting Cre-dependent
hM4Di and administering intra-peritoneal CNO during reversal learning. When inhibiting lOFC VIP interneurons
after reversing stimulus-outcome association, both in mice and the computational model, we found that silencing VIP
interneurons in lOFC had a critical effect in significantly delaying reversal learning (Fig. 5a). The model suggests
that the degraded reversal learning can be attributed to a missing top-down inhibition from lOFC through local SST
interneuron interaction in S1. In the control condition, the model uses lOFC activity to drive sensory SST neurons, as
experimentally observed in V1 [20]. If VIP interneurons in lOFC are silenced, the confidence loss triggered during the
outcome window is prevented to reinforce the anticipatory context-prediction error during the stimulus window (Fig.
2c). As a consequence, the previously learned apical values in S1 pyramidal neurons are not suppressed by top-down
inhibition upon the rule-reversal (Fig. 5b,c). In S1, the previous reward-predictive sensory neurons remain enhanced
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during reversal learning with (grey) and without (purple) chemogenic silencing of their lOFC VIP neurons (10 and 2 mice respectively).
Bottom: Simulated performances with the confidence loss (CL) fixed to zero (grey) compared to the undisturbed control case (purple). b,
Top-down feedback hierarchy onto pyramidal neurons, where inhibition overrules excitation, and disinhibition overrules inhibition. At the
lowest level (blue), the top-down excitation targetting the apical dendrites of pyramidal neurons represents a context-dependent anticipatory
predictor (in S1 of reward, in lOFC of a confidence loss). At the middle level (green), the SST-mediated top-down inhibition counteracts
the lower level excitation by a higher-order error (in S1 the context-prediction error counteracting the neuron-specific apical value). At the
top level (purple), the top-down disinhibition represent a reinforcer conveyed by VIP interneurons (in S1 an action-induced reward signal,
in lOFC the confidence loss). c, Microcircuits implementing the top-down feedback hierarchy from b within S1 and lOFC, with apical
excitation (blue) inhibited by an error-signal (green), and a new anticipatory context signal (e.g. Context 2 in S1) being reinforced through
disinhibition.

and learning is disturbed, because the action selection network has to compensate for the incorrectly modulated sensory
representation (see also Fig. 4d).

Discussion

We presented dual calcium imaging in S1 and lOFC of mice during a stimulus-response association task while switching
the association rule. During learning of a first rule, the sensory response in S1 to the reward-predictive stimulus was
enhanced. After reversing the rule, the stimulus enhancement to the previously reward-predictive stimulus is undone,
while the response to the reward-predictive stimulus in the second rule is now getting enhanced. We experimentally
identified lOFC as the seat to signal the rule-switch and trigger the reorganization of the sensory representation in S1. A
theory is presented that explains the top-down induced reorganization of S1 based on the notion of a context-prediction
error.

During learning, the confidence in the predicted outcome increases. An unexpected rule-switch results in a confi-
dence loss at the moment, when the previously correct outcome prediction turns out to be wrong. We showed that such
a confidence loss is signaled by lOFC after the rule switch, when the expected reward during the outcome window is
missed. Crucially, in trials following the rule-switch, lOFC advanced its firing and learned to signal a context-prediction
error already during the stimulus window, being predictive for the confidence loss confirmed in the following outcome
window. In S1, the sensory response to the reward-predicting stimulus is enhanced. The stimulus enhancement is
neuron-specific and proportional to the contribution of the neuron to the reward prediction. With the signaling of the
context-prediction error by lOFC after the rule-switch, the response enhancement in S1 is undone via apical inhibition
through local SST interneurons. During the subsequent relearning, the sensory response to the newly reward-predictive
stimulus becomes enhanced through a reorganization of the top-down input to S1. Blocking experiments suggest that
VIP interneurons in lOFC signal the confidence loss to the lOFC pyramidal neurons, providing them the teaching
for learning the anticipatory context-prediction error. This context-prediction error triggers the reorganization of the
top-down induced gain modulation in S1.

The behavior-dependent reorganization of sensory representation during learning is well recognized [47–49], and
top-down feedback has been established as a fundamental component of perceptual learning [8, 10, 11, 13, 15, 16, 25].
Our work revealed how early regions of sensory processing can be modulated by lOFC to reshape sensory computation
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depending on task context. The importance of the lOFC in reversal learning and contextual response-outcome associ-
ations has been well documented in mice [18], rats [50], non-human primates [51], and humans [19, 52]. We recently
reported that similar neural circuits involving lOFC could be operational using analogous cognitive strategies in dis-
tinct species [53]. While many different roles have been proposed for the lOFC to support cognitive flexibility [54, 55],
its importance has been highlighted for state representation learning [56–58], and in particular for representing con-
fidence [59, 60] and context switching [27]. We demonstrated how the lOFC, by signaling a context-prediction error,
can reshape sensory processing after a rule switch.

The hierarchy of reward- and context-prediction errors can be viewed as a mechanism to reduce different sources
of uncertainties, in line with other uncertainty minimization theories [61]. Selective amplification prevents irrelevant
information to disturb the learning process, which reduces the expected uncertainty [62] as long as the context remains
the same. While uncertainty estimates have been suggested for global learning-rate modulation [63], regulating selec-
tive top-down amplification provides a mechanism for a neuron-specific learning-rate modulation (see Supplementary
Equations 1). A rule reversal elicits uncertainty about the current context, which can be termed unexpected uncer-
tainty (see Supplementary Equations 3), and should reduce reliance on top-down priors [62]. SST interneurons have
been shown to drive a shift away from top-down influences to favor bottom-up information streams [31]. Lateral OFC
projections to SST interneurons in S1 provide a direct mechanism to inhibit selective top-down amplification and
unbias the sensory representation in case of contextual uncertainty.

VIP disinhibition represents a local reinforcement signal that varies depending on the cortical region [44, 46, 64]. In
the basolateral amygdala, VIP interneurons respond strongly to punishments and are necessary to develop enhanced
responses to conditioned stimuli during fear learning [65]. The only ionotropic serotonin receptors (5-HT3R) expressed
in the cortex are found in interneurons that do not express PV or SST [66] and co-express VIP and CCK [67]. Multiple
studies have found that serotonin in the OFC plays a crucial role for reversal learning [68–70]. As serotonin has been
associated with sensory uncertainty [71], unsigned reward-prediction error [72], surprise [73], expected and unexpected
uncertainty [63], it makes an interesting suspect to relay confidence loss to lOFC VIP interneurons (Fig. 5c).

Our computational model provides a structure to makes prediction that can be experimentally tested. For example,
is lOFC necessary only for the first rule reversal and not the subsequent ones after context representations have
been consolidated? If the function of lOFC is purely based on SST-mediated inhibitory feedback (Fig. 3a), the model
predicts that a strong lOFC response will be required following each reversal. In the case where lOFC directly changes
the context representation (Fig. 4f), the model predicts that the lOFC response upon a rule reversal would decrease
for subsequent reversals (Extended Data Fig. S8b).

The richness with which the brain modulates sensory representations through first- and second-order reward-
prediction errors could also have applications in machine learning. Dendritic nonlinearities were suggested to increase
the expressive power of neural networks [74] and context-dependent dendritic gain modulation was proposed as a
biologically plausible mechanism for multi-task learning and as a means to reduce catastrophic forgetting in continual
learning [13, 34, 75, 76]. However, these models lacked an explanation for how the brain can recognize a change of
context, and signal the context change before the decision making, during sensory perception. Prospective errors were
suggested to project to apical dendrites of pyramidal neurons and prospectively correct the activity of deep neurons in
the cortical hierarchy [77–80]. The presented data and theory on context-prediction errors is in line with such previous
results and offers new insights that may inspire future developments in both computational neuroscience and artificial
intelligence [3, 81].

Methods

Gain modulation in sensory representations

The sensory representation z consists of N pyramidal neurons i ∈ {1, ..., N} with two compartments. The basal
compartment received bottom-up sensory inputs with fixed selectivity producing activations xbas and the apical
compartment dictated the multiplicative gain gap of the firing rates,

zi = gapi ⌊x
bas
i ⌋ , (1)

where ⌊·⌋ stands for the rectifier function ⌊y⌋ = max(0, y). An apical compartment receives Ncxt = 2 context-dependent
excitatory inputs xcxt

j , weighted by the synaptic strength wap
j . It also receives global inhibition rSST from a population

of SST interneurons, see equation (10). These top-down apical afferents determine the context-specific apical gain gapi
within the range [1, gmax],

gapi = min

1 +

Ncxt∑
j=1

wap
ij x

cxt
j − rSST

 , gmax

 . (2)
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The salience of a sensory stimulus is proportional to the gain gapi of its sensory neurons. The gain is amplified through

the apical excitation
∑Ncxt

j=1 wap
ij x

cxt
j that originates in the context representation xcxt. The apical excitation can be

cancelled by the SST interneuron activity rSST, or altered by changing xcxt (as in Fig. 4f).

Apical amplification based on neuron-specific value

The apical weights wap are learned to amplify sensory neurons that are predictive for reward. Each neuron is assigned a
neuron-specific value vi, encoding how much this neuron contributes to the estimate of the (global) value V (z) = E[R|z],
i.e. to the expected future reward conditioned the current state representation. The value estimator V̂ (z) is calculated
based on the sensory representation z as

V̂ (z) =
∑
i

wV
i zi . (3)

The weights wV
i are adapted to reduce the reward-prediction error RPE = R−V̂ (z), constrained by a L1 regularization,

∆wV
i = ηV

(
R− V̂ (z)

)
zi − λV sgn(wV

i ) . (4)

This weight update reduces the loss LV = E[RPE2]+λV ∥wV ∥1, where ∥.∥1 refers to the L1-norm. The neuron-specific
value vi encoding how much a neuron i predicts an upcoming reward is defined by its non-negative contribution to the
value estimation V̂ , i.e. vi = ⌊wV

i zi⌋. A key ingredient of the model is that the sensory representation is sharpened by
the top-down input, such that the task-relevant sensory neurons are amplified compared to task-irrelevant neurons.
The criterion for task-relevance is set by the comparison between the value vi of a neuron and the activity rSST of the
SST interneurons. If vi > rSST, the apical excitation is enhanced. If vi < rSST, the neuron i is not sufficiently relevant
and its apical excitation is reduced. This yields to the learning rule for the excitatory apical synapses

∆wap
ij = ηap

(
vi − rSST

)
xap
j , (5)

where ηap represents the learning rate and xap
j is the presynaptic activity, see equation (2). Asymptotically, this

plasticity rule leads to a binary distribution of the apical weights. Active synapses projecting to a highly task-relevant
sensory neuron become potentiated and converge towards wap

max = 1. Synapses projecting to a task-irrelevant neurons
become depressed and converge towards wap

min = 0 (see Supplementary Equations 2). Taken together, the RPE informs
the value estimate and hence the gain amplification of individual L2/3 sensory neurons.

Estimating the confidence of the reward prediction

In order for the brain to notice a change of context, it first needs a notion of understanding the current context at hand.
The action-value estimate Q̂(a, z) approximating E[R|a, z] — while also supporting action selection (see Supplementary
Methods 2) — encodes the current understanding of the agent about the task. The action-value estimate Q̂(a, z) is
computed from an outcome prediction network that implicitly represents the the context, i.e. the task rule, through
neurons becoming selective for stimulus-action-outcome triples (see Supplementary Methods 1).

The variance unexplained (VU) by the model can be measured by the expected squared reward-prediction error
σ2 = E[(R−Q̂)2], see Supplementary Equations 4. The variance unexplained, σ2, jointly measures the bias in the reward
prediction, its distraction by task-irrelevant stimuli, and the intrinsic variability of R (see Supplementary Equations
3). We assume that the brain approximates σ2 with an internal estimate that we denote as prediction uncertainty σ̂2

[82]. The prediction uncertainty σ̂2 is updated based on the difference between the current squared reward-prediction
error at the current time step and the uncertainty estimate in the previous trial,

∆σ̂2 = ησ

(
(R− Q̂)2 − σ̂2

)
, (6)

with a small learning rate ησ. If σ̂
2 is small, the animal can be confident in its model of the task and the reward

prediction. We therefore defined the prediction confidence c as estimate of the squared fraction of explained variance
(FVE), or also squared coefficient of determination (see Supplementary Equations 4),

c =

⌊
1− σ̂2

σ2
max

⌋2

. (7)

Here, σ̂2/σ2
max represents the fraction of variance unexplained (FVU). The maximal variance σ2

max = 0.5 was computed
for a uniform random policy (see Supplementary Equations 5). The prediction confidence c is restricted to values
between 0 and 1. For more details see Supplementary Equations 4.
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Confidence loss from unexpected outcomes

The prediction uncertainty σ̂2 can also be understood as a form of expected uncertainty given the internal model
of the task [62, 83]. The prediction confidence, correspondingly, can be seen as model confidence. When an outcome
occurs that lies further away from the prediction than would be expected, it can elicit unexpected uncertainty [63].
Translated to our framework, if (R− Q̂)2 − σ̂2 > 0, the brain signals a higher-order error compared to the first order
prediction error R− Q̂. As the rat OFC has been shown to be involved in confidence computation [60], we suggest that
the confidence loss (CL) could also be signaled to lOFC. In our model, CL is defined as decrease in model confidence
induced by the change ∆σ̂2 given in equation (6). The confidence loss can be expressed as a function of ∆σ̂2,

CL = ⌊−∆c⌋ ≈ 2
√
c

σ2
max

⌊(R− Q̂)2 − σ̂2⌋ = 2
√
c

σ2
max

⌊∆σ̂2⌋ , (8)

see Supplementary Equations 6. Hence, the CL can be viewed as a confidence-weighted 2nd-order error of the reward
prediction. A strong confidence loss is contingent on the animal being confident in its model of the environment (c > 0).

Context-prediction error in lOFC anticipates the confidence loss

We denote the anticipation of the CL at stimulus time the context-prediction error (CPE). While the confidence loss
CL is elicited when an unexpected outcome is observed during the reward presentation window tR, the contextual
uncertainty can be represented in the next trial already during the stimulus window tS. The CPE is learned by
minimizing the squared difference between CL and CPE, 1

2 (CL− CPE)
2
. Minimizing this squared difference online

by gradient descent leads to an update of the CPE by

∆CPE = ηlOFC (CL− CPE) , (9)

with learning rate ηlOFC. In the simulations, we model the lOFC activity during the stimulus window as context-
prediction error, rlOFC = CPE.

Context-prediction error inhibits apical dendrites in S1 via SST interneurons

The SST interneurons in S1 are driven by the context-prediction error encoded in lOFC. They modulate the sensory
processing in two ways. First, they directly reduce the gain of the sensory representation neurons in S1 by inhibiting
the apical dendrite activity, see equation (2). Second, they represent a task-relevance threshold that the neuron-specific
value vi has to reach in order to potentiate excitatory apical synapses, see equation (5) and Supplementary Equations
2. The firing rate of the SST population in S1 at the time of stimulus presentation tS was modeled as

rSST(tS) = wSST
⌊
rlOFC − rVIP

0

⌋
+ rSST0 , (10)

where rSST0 , wSST and rVIP
0 are constants.

lOFC triggers switch of context representation

In most simulations, the gain amplification conveyed by excitatory apical synapses wap originated from a single, fixed
context representation xcxt = (1, 0). For this single-context model of the brain, the apical gain could only be adapted
by changing the synaptic weights wap or by tuning the inhibitory contribution from SST interneurons. Alternatively,
different contexts representations xcxt can be considered, and the gain can be modified by switching the context. To
show this, we implemented context 1 by xcxt1 = (1, 0) and context 2 by xcxt2 = (0, 1). The switch between both
contexts was triggered when the lOFC activity reached a threshold activity θswitch and the model confidence c was
above a threshold cswitch.

Confidence-weighted action selection

During reversal learning, the policy depended on the sensory representation z and on the model-confidence c. The
probability of selecting an action π(a|z, c) consisted of a combination of two separate action selection policies: one
explorative policy πQ based on action-values and one exploitative policy πPG based on policy gradient (Extended Data
Fig. S4a)

π(a|z, c) = c · πPG(a|z) + (1− c) · πQ(a|z) . (11)

Hence, at low confidence c — in case of high uncertainty σ̂2 — action selection was mainly driven by the explorative
policy πQ. At high confidence c — in case of low uncertainty — the action selection was dominated by the exploitative
policy πPG. For more details on the action selection (see Supplementary Methods 2, 3 and Extended Data Table 1).
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Simulated go/no-go task

Learning of the go/no-go sensory discrimination task was simulated for 600 trials (Fig. 1b). After that, the simulation
was either terminated or the stimulus-reward contingency was reversed. Each trial began by randomly sampling
the N -dimensional stimulus pattern xbas characterizing the basal input to the N sensory pyramidal neurons. In all
simulations, one sensory representation neuron was exclusively selective to stimulus 1 (s1), which means that its basal
activation xbas

s1 was 1 in case the stimulus 1 was presented and 0 otherwise. Analogously, one neuron was exclusively
selective to stimulus 2 (s2). The remaining Nd = N−2 ‘distractor’ neurons received random basal inputs independently
sampled from binary noise ξi ∈ {0, 1} with probability 0.5 for each trial (see Fig. 1c). In other words, xbas

i was either
1 or 0 (except for Fig. 1e, 1f, Extended Data Fig. S4d and S4e, where the s1- and s2-dependent response strengths
were varied). Unless specified otherwise, we used Nd = 128 and N = 130.

The bottom-up activations xbas were processed to compute the sensory representation z, see equation (1). Based
on z, the policy π then selected between two actions: go (aGO) or no-go (aNG). Depending on the stimulus and action
combination, an outcome with reward R ∈ {Rpunish, 0, Rreward} was fed back to the agent (Extended Data Fig. 1b).

Simulation parameters

All simulations were run with 64 different pseudorandom seeds, which were all used to compute the means and other
statistics displayed in the figures. When applicable, the parameters ηV , ηπ, ηQ, rVIP

0 and wSST were set by a grid
search algorithm (Extended Data Algorithm 2) to either maximize the performance or minimize the number of trials
necessary to reach expert performance (Extended Data Table 3). All other parameters (λV , rSST0 , TQ, ηc, gmax, σ

2
max,

Rreward, Rpunish) were predefined constants (Extended Data Table 2). A detailed description of the parameter settings
is included in Supplementary Methods 3 and 4.

Model evaluation

In order to evaluate the computational model simulations and compare them to experimental observations, we employed
different metrics:
Performance. The learning progress was quantified by tracking the performance during the simulation. The perfor-
mance is computed as a moving average of the number of correct actions taken within a window of 100 trials. This was
implemented with a convolution using a reflection padding of 50 trials at the boundaries (beginning / end of training
or before / after reversals). The performance threshold to achieve expertise was set at 85%.
Relative gain. The relative gain of the sensory neuron i used in Fig. 4a quantifies how the gain gapi of a pyramidal
neuron i compares to the gain of the other neurons. It is defined as the gain divided by the average gain across all
other sensory neurons,

Γap
i =

gapi
1
N

∑N
j ̸=i g

ap
j

. (12)

The relative gain for the go-stimulus selective neuron Γap
go will be taken for a different sensory neuron depending on

the current task rule (as in Extended data Fig. S8a), unless it is specified for an explicit rule (as in Fig. 4)c).
π-weight. The strength of synaptic weight wPG

GO originates from the go-stimulus neuron (the s1-selective neuron during
the original rule and the s2-selective neuron in case of the reversed rule) and targets the go action neuron in the policy
network πPG. The π-weight measures wPG

GO and characterizes the sensorimotor association that has to be learned for
the go/no-go sensory discrimination task.
Signal-to-noise ratio. The signal-to-noise ratio (SNR) used in Fig. S3 is defined as the ratio between the variance
of a stimulus encoding neuron and of the distractor neurons. Since the activity zs of a go/no-go stimulus encoding
neuron corresponds to a Bernoulli variable (with probability p = 0.5) amplified by a gain gs and the sum of distractor

neuron activities
∑Nd

i=1 zi) corresponds to a binomial distribution (also with probability p = 0.5 and in this example
without gain modulation), we find that

SNR =
Var(zs)

Var(
∑Nd

i=1 zi)
=

p(1− p)g2s
p(1− p)Nd

=
g2s
Nd

. (13)

Animals

C57BL/6, male mice aged between 8 and 16 weeks were used in our experiments. All experimental procedures were
conducted in accordance with the requirements of the United Kingdom Animals (Scientific Procedures) Act 1986 and
the Federal Veterinary Office of Switzerland, approved by the Cantonal Veterinary Office in Zürich. Experiments were
conducted under the authority of Home Office Project License PABAD450E and personal license numbers 285/2014
and 234/2018. Mice were housed at 24°C in a 12-h reverse dark-light cycle (07h00 to 19h00). At the end of the
experiment, the mice were deeply anaesthetized, transcardially perfused and euthanized by exposure to CO2 in their
home cage.
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Water scheduling

During behavioural training, mice stayed on a 5/2 days water restriction paradigm. They were weighed daily and kept
at 85-90% of the previously determined baseline weight. In case animals did not receive enough reward during training
sessions (40ml/kg/day), they were given water after training. Water was always provided ad libitum during weekends.

Handling and habituation

To familiarize the animals with the experimenter, handling was started before surgeries and continued during the
recovery period. Habituation to head restraint in progressively lengthened sessions until they tolerated at least 15
minutes of head restraint.

Cranial window and cannula implantation

Mice were implanted with a cranial window (S1) or cannula (lOFC) under controlled anaesthesia [18]. For the cranial
window preparation, a 4 mm cover glass was placed inside the craniotomy and the edges were sealed with dental
cement. For imaging deeper structures, the superficial brain tissue was aspirated, a cannula with a glass bottom placed
on top of the target area and the edges sealed with dental cement. A head post was attached using dental cement,
and the skin was reattached to the implant.

Sensory learning and reversal learning task

We trained mice on a tactile Go/No-Go reversal learning task [18]. Animals were presented with two sandpaper tex-
tures (P100, coarse, s1; P1200, fine, s2) and they needed to learn to discriminate to either earn a sucrose water reward
(‘Go’-texture, P100, ‘hit’) or withhold a response to avoid punishment (‘No-Go’-texture, P1200, ‘CR’, correct rejec-
tion). Responding towards the ‘No-Go’-texture resulted in experiencing white noise (‘FA’, false alarm). After animals
displayed stable expert performance (d’>1.5 in three consecutive sessions; d’= Z(hit/(hit+miss))−Z(FA/(FA+CR)),
with Z(p), p ∈ [0, 1], being the inverse of the cumulative Gaussian distribution), stimulus-outcome associations were
reversed (P100, ‘No-Go’-texture; P1200, ‘Go’-texture) and mice needed to adapt their responses accordingly. The
task was amended into a serial reversal learning task by introducing a second rule-switch after animals displayed
stable expert performance during initial reversal learning (d’>1.5 in three consecutive sessions), reinstating initial
stimulus-outcome (P100 as ‘Go’-texture, P1200 as ‘No-Go’-texture).

Two-photon Ca2+ imaging

Neurons were imaged using a custom-built two-photon microscope equipped with a Ti: Sapphire laser system (approxi-
mately 100 femtosecond laser pulses; Mai Tai HP, Newport Spectra Physics), a water-immersion 16X Olympus objective
(340LUMPlanFl/IR, 0.8 numerical aperture, NA), galvanometric scan mirrors (model 6210; Cambridge Technology)
and a Pockels Cell (Conoptics) for laser intensity modulation. Virally expressed GCaMP6f in L2/3 neurons in S1 were
imaged at 940 nm. Neuronal activity was recorded at a 15 Hz frame rate (796 x 512 pixels) for 10 seconds each trial by
detecting fluorescence changes using a photomultiplier tube (Hamamatsu). Imaging was intermitted during the 3s ITI.

Ca2+ imaging analysis

Ca2+ imaging data of each session was processed using the Python-based Suite2p processing pipeline ([84]). The
recordings were motion-corrected using non-rigid registration. Cells were detected with automated ROI detection
followed by manual curation. Raw fluorescence time courses were extracted as each ROI’s (non-weighted) mean pixel
value. In addition, a neuropil trace was computed for each ROI to generate neuropil-corrected calcium traces F(t).
The fluorescence change during each trial epoch (stimulus-evoked, reward-responsive responses) was then calculated
by subtracting the baseline fluorescence F0 (mean fluorescence value of the first 1.5 s) from the corrected traces F and
dividing by F0; ∆F/F0 = (F − F0)/F0.

Chemogenic silencing

Inhibitory DREADDs (hM4Di) were either expressed in excitatory (CaMKIIα-hM4D(Gi)-mCherry) or GABAergic
VIP-interneurons (AAV1/2-hSyn1-dlox-hM4D(Gi)-mCherry(rev)-dlox, VIP-cre mouse line) in layer 2/3 of the lOFC
through virally mediated transfection. hM4Di was activated via intraperitoneal (i. p.) injection of the ligand clozapine
N-oxide (CNO dihydrochloride, 1–5 mg/kg, Tocris Bioscience, Catalog number 4936) 25-30 minutes before each training
session.
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Data availability

The experimental data that support the finding of this study are available upon reasonable request from the
corresponding author. The simulated data can be reproduced from the code provided.

Code availability

The code for the simulations and visualisations is provided on https://github.com/unibe-cns/TopDownOFC.
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Supplementary Methods

1 Inferring action-values based on the outcome prediction network

The action-value estimate Q̂ was computed by using an outcome prediction network. For each outcome
ω ∈ {reward, punishment}, we defined the indicator function Ωω, which indicated whether an outcome ω took place
(Ωω = 1) or not (Ωω = 0). The estimated probability to encounter outcome ω upon choosing action a ∈ {go, no− go}
in response to stimulus representation z is denoted by p̂ω(a, z). We modeled these estimated outcome probabilities by
means of 4 perceptrons, one for each of the 4 action-outcome pairs (a, ω), with a standard logistic activation function φ,

p̂ω(a, z) = φ
(
(wQ

aω)
Tz

)
. (14)

These probability estimators were trained online, each time an action a′ was taken according to

∆wQ
a′ωj = ηQφ′

(
(wQ

a′ω)
Tz

)(
Ωω − p̂ω(a

′, z)
)
zj , (15)

where φ′ denotes the derivative of φ. Because the state-action-outcome triples (z, a, ω) define the rule, the outcome
predictions p̂ω(a, z) represent the internal understanding about the rule (and more generally about the context). With
these outcome predictors, Q̂ can be expressed by a sum weighted according to the value Rω ∈ {−1, 1} of each outcome

Q̂(a, z) =
∑
ω

Rω p̂ω(a, z) = p̂reward(a, z)− p̂punish(a, z) . (16)

For our two outcomes, we set Rreward = 1 and Rpunish = −1, but the model can also be generalized to more outcome
types.

2 Action selection by policy gradient and action-value estimate

Action selection was simulated to be based on the sensory representation z. The policy network consisted of a
perceptron with sigmoidal transfer function ϕ, which produced the action selection probability πPG,

πPG(ago | z) = ϕ((wPG)Tz) (17)

πPG(anogo | z) = 1− πPG(ago | z) (18)

ϕ = ϵϕ +
(1− 2ϵϕ)

1 + bϕ exp(−x)
, (19)

where ϵϕ and bϕ are constants. The network learned through policy gradient [85] by minimizing the loss

LPG = −R log(π(a′|z)) , (20)
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where a′ is the chosen action and R is the reward amplitude of the outcome observed. This loss was minimized by
online gradient descent with learning rate ηPG according to the learning rule

∆wPG = ηPG dLPG

dwPG
. (21)

Since a pure policy gradient network approach can lead to an excessively exploitative action selection with very
little exploration after convergence, it can be inflexible when facing non-stationary conditions such as rule reversals
(Extended Data Fig. S4e). We therefore combined it with a more exploratory policy πQ, which is computed by weighing
the predicted outcomes Q̂(a, z), with a softmax transfer function parameterized by a temperature constant TQ,

πQ(a|z) = exp (Q̂(a, z)/TQ)∑
i exp (Q̂(ai, z)/TQ)

, (22)

where Q̂(a, z) is given by equation (16) and the sum extends across the two actions ai ∈ {aGO, aNG}, corresponding
to lick or no lick, respectively go or no-go. Both the exploratory policy πQ and the exploitative policy πPG were
incorporated into the final policy π, which consisted of the confidence weighted convex combination (Extended Data
Fig. S4a),

π(a|z) = c · πPG(a|z) + (1− c) · πQ(a|z) , (23)

where c is the prediction confidence, see equation (7). The overall policy π was shown to learn effectively upon reversal
learning and therefore ensured that any lack of adaptability would not be caused by the inflexibility in the action
selection network (Extended Data Fig. S4e). Depending on the purpose of the modeling, we used different algorithms
for the action selection. In most cases, the convex policy was used as described in equation (11). For Fig. 1 however,
the purpose was to highlight the impact of the sensory representation z and gain modulation for a standard policy,
which is why the pure policy network πPG was used (for completeness purposes Fig. 1 is replicated with the convex
policy π in Extended Data Fig. S4). For the first reversal simulations — which illustrated the dynamics of uncertainty,
confidence and context-prediction error (Fig. 2b,c,f) — we imposed a performance learning curve, dictated by a fixed
evolution of the correct action probability p(aopt) (Extended Data Fig. S1d).

3 Model combinations

In this manuscript, we implemented different combinations of action-selection policies and gain modulation mecha-
nisms (Extended Data Fig. S1). The action-selection policy was one of: policy gradient, fixed performance trace (fixed
policy), convex policy. The gain modulation was one of: none, only reward-guided amplification without lOFC, ampli-
fication with lOFC targeting SST interneurons in S1, amplification with lOFC switching the context representation.
Extended Data Table 1 summarizes, which model was shown in which figure. While multiple model combinations were
implemented for completeness purposes, three were central to our main findings. 1) To demonstrate the advantage
provided by top-down excitation in stationary environments, we combined classical policy gradient for action selec-
tion with apical gain amplification of sensory neurons based on reward association (Extended Data Fig. S1a). 2) To
illustrate the second-order statistics of reward-prediction errors in a non-stationary environment (without using the
full model adapted for the purpose of reversal learning), we used a fixed policy performance trace (Extended Data
Fig. S1b). This allowed to generate a realistic evolution of the reward sampling distribution and study the dynamics
of confidence loss and context-prediction error during reversal learning (Extended Data Fig. S1d). 3) Finally, the full
model with lOFC feedback to S1 SST interneurons and in some instances affecting the context representation used a
confidence-weighted convex policy (Extended Data Fig. S1c). The convex policy ensured that any lack of reversal per-
formance would not be due to deficits in the flexibility of the policy (Extended Data Fig. S4), but could be attributed
to failing to re-adapt the sensory representation.

4 Parameter values

The parameters ηV , ηπ, ηQ, rVIP
0 and wSST were optimized by grid search, while all remaining parameters had fixed

values, which are reported in Extended Data Table 2. The parameter optimization took place by testing different
sets of parameters values taken from logarithmic grid. Each set of parameters was tested with 64 pseudo-random
initializations. After the best set of parameters was determined, a new tighter logarithmic grid of parameter values
was created surrounding the best parameter configurations. Each new set of parameters was then tested to determine,
if they could improve on the best configuration. This process was repeated a second time with yet a tighter grid and
the final best parameter configurations was chosen, see Extended Data Algorithm 2. The criterion for the best set of
parameters was usually the number of trials to reach expert performance after one reversal. In some instances, like
in Fig. 1, we optimized for the final performance for the original rule (see Learning perf. in Extended Data Table 3)
and in one example, we optimized for the number of trials to reach expert performance in the original rule (Extended
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Data Fig. S6).
The optimized values are reported in Extended Data Table 3. While many different parameter optimizations were
performed, only two are relevant for the main results. 1) For the results in Fig. 1, we optimized the parameters with
respect to the final learning performance (without any rule reversal). 2) For the remaining main Figures, we first
optimized the model without lOFC to achieve expert performance after one reversal in the least number of trials
possible. This allowed as to fix the policy related parameters ηπ and ηQ, before optimizing the remaining parameters
related to the top-down modulation of the sensory representation. While this ‘mixed’ optimization strategy did not
target the theoretically best parameter configuration for the full model with lOFC (as illustrated in Extended Data
Fig. S6), it prevented any potential bias towards the model with lOFC, when comparing the model with and without
lOFC (Fig 3).

Supplementary Equations

1 Gains modulate neuron-specific learning rates

For a rate-based neuron j, the multiplicative gain gj modulates the pre-gain activation xj to produce the firing rate

zj = gj ⌊xj⌋ . (24)

At the same time, most synaptic weight learning rules — from Hebb to error backpropagation — are almost universally
proportional to the presynaptic activation. As a consequence, increasing the multiplicative gain of a neuron, raises the
rate of change of its efferent synapses. From the perspective of the weight learning rule, the learning rate of a synapse
wij can be viewed as being modulated by the multiplicative gain gj of the afferent neuron j,

∆wij ∝ η0 zj = η0 gj⌊xj⌋ = ηj⌊xj⌋ . (25)

Here, η0 corresponds to the traditional global learning rate and ηj = η0 gj is the learning rate of synapses activated
by a neuron j. Therefore, by increasing the gain of task-relevant compared to task-irrelevant sensory neurons, it is
possible to help the synapses of the policy network to learn more strongly from the task-relevant information. On the
other side, reducing the gain will reduce the plasticity. Hence SST interneurons activated by lOFC upon reversal can
protect policy weights from being unlearned.

2 Apical amplification with respect to task-relevance

In this section, we will elaborate on our model for learning sensory representations that exhibit heightened responses
to task-relevant information. For this, we assume that in biological neural networks, the main mechanism to produce
selective sensory representations is not based on the synaptic plasticity of feed-forward pathways. Rather, in order to
keep a wide range of features available for multiple different contexts, the brain needs to increase the gain of task-
relevant neurons via top-down afferents. We further assume that this gain modulation occurs by targeting the apical
dendrites of sensory pyramidal neurons. With this in mind, we can set the following objective for our top-down gain
modulation mechanism:

→ High task-relevance of a stimulus should lead to a high gain and low task-relevance a low gain.

This objective can be formalized and implemented in different ways. We opted to define the task-relevance of a stimulus
i in terms of its contribution to the outcome prediction V̂ ,

V̂ (z) ≈
∑
i

dV̂

dzi
· zi =

∑
i

∆V̂i . (26)

Here the approximation becomes an equality in the case of a linear dependence, which is the case in our model. The
term ∆V̂i can be interpreted as the reward prediction value gained by the model from the activity of neuron i. For
apical excitation, we are interested in the the positive part vi = ⌊∆V̂i⌋, of which the expectation E [vi] makes our
definition of task-relevance. In order to produce an apical gain amplification based on the task-relevance of a neuron
i, we applied the plasticity rule

∆wap
ij = ηap

(
vi − rSST

)
xc
j . (27)

By analyzing this update rule, we can derive the convergence state of the apical excitation for a neuron i. For this we
will consider the setting, where j ∈ {1} and xc

j = 1. In expectation the synaptic plasticity can hence be formulated as

E
[
∆wap

ij

]
= E

[
ηap

(
vi − rSST

)]
∝ E [vi]− E

[
rSST

]
. (28)
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We find that the plasticity rule lets the apical excitation transmitted by the apical synapses wap
ij grow large for neurons

with a task-relevance greater than the average SST activity, and shrink small otherwise,

E
[
wap

ij

]
=

wap
max; if E [vi] > E

[
rSST

]
wap

min; if E [vi] < E
[
rSST

]
.

(29)

This confirms that E[⌊∆V̂i⌋] can be considered as out effective definition of task-relevance. The rectifier function ⌊·⌋
is used to prevent the explicit apical inhibition of neurons that are predictive of negative outcomes. Instead, these
negative contributions will have the same effect on the gain modulation those of neurons, which are irrelevant for
the outcome prediction (i.e. neurons with ∆V̂i = 0). Finally, one can note that the SST activity not only reduces
immediate apical activity, but also drives synaptic weight depression in the apical dendrites [86] and thereby raises
the task-relevance threshold to drive gain amplification. The SST interneuron activity rSST is excited by the lOFC,
which increases rSST in case of context-prediction error, see equation (10). In consequence, following a rule reversal,
the lOFC raises the task-relevance threshold for the consolidation of top-down apical amplification.

3 Distinguishing sources of uncertainty

It has been demonstrated that the expected squared error of an estimator can be decomposed into three components:
an irreducible, a bias and a variance component [87]. Here, we reproduce this result and adapt it to our case, where
distracting information and changes of context come into play. We first define the estimation target Y = f(X) + ϵ

with E[ϵ] = 0 and V ar(ϵ) = σ2
ϵ . These targets are predicted by a stochastic estimator f̂(X) based on the observables

X. The expected squared prediction error between the target and the estimator can be interpreted as the predictive
uncertainty. Next we will demonstrate how the predictive uncertainty can be decomposed into three separate sources
of uncertainty: (1) an intrinsic and irreducible error (sometimes referred to as risk [88, 89]) determined by ϵ, (2) a

bias, which is reduced if the expected value of f̂(X) closely matches f(X) and (3) a variance term which arises from

the intrinsic stochasticity of f̂(X):

E[(Y − f̂(X))2|X = x0] =E[(ϵ+ f(x0)− f̂(x0))
2]

=E[ϵ2] + E[(f(x0)− f̂(x0))
2]

=σ2
ϵ + E[(f(x0)− E[f̂(x0)] + E[f̂(x0)]− f̂(x0))

2]

=σ2
ϵ + E[(E[f̂(x0)]− f(x0))

2] + E[(f̂(x0)− E[f̂(x0)])
2]

+ 2E[(E[f̂(x0)]− f(x0))(f̂(x0)− E[f̂(x0)])]

=σ2
ϵ +

(
E[f̂(x0)]− f(x0)

)2
+ E[

(
f̂(x0)− E[f̂(x0)]

)2
]

=Irreducible error + Bias2 +Variance .

(30)

We can also apply this framework to our model, where the estimation target Y represents the reward R of the
deterministic go/no-go task and the estimator f̂ represents the reward prediction Q̂. In this case, the observables X
encodes the action as well as the sensory information. Next we will adapt this decomposition to consider distracting
inputs and non-stationary changes of context.

Distraction uncertainty. In our model, the reward prediction was deterministic and had no intrinsic stochasticity,
meaning the variance term in equation (30) was zero. The reward outcomes were also deterministic, meaning the
irreducible error σ2

ϵ = 0. However the predictor also received task-irrelevant information D. This contribution can be
emphasized by splitting off this distracting information D from the observables X as distinct inputs to the estimator
f̂ . Using the same process as in equation (30), we find

E[(Y − f̂(X,D))2|X = x0] =σ2
ϵ + (E[f̂(x0, D)]− f(x0))

2 + E[(f̂(x0, D)− E[f̂(x0, D)])2]

=Irreducible error + Bias2 +Distraction .
(31)

Under this formulation, the top-down amplification of task-relevant signals can be understood as a means to reduce
the distraction component of the prediction uncertainty.

Contextual uncertainty. So far we assumed a single stationary context. In order to consider the possibility of a
change of context, we just need to introduce the dependence of the target Y on a current context c∗, while the model
assumes the context cm,

Y = f(X, c∗) + ϵ . (32)
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We can now decompose the predictive uncertainty in a non-stationary environment. In case the correct context is
assumed (cm = c∗),

E[(Y − f̂(X, c∗))2|X = x0] =σ2
ϵ + (E[f̂(x0, c

∗)]− f(x0, c
∗))2 + E[

(
f̂(x0, c

∗)− E[f̂(x0, c
∗)]

)2
]

=Irreducible error + Bias2 +Variance .
(33)

This is similar to what we found in the stationary case, see equation (30). However, if the wrong context is assumed
(cm = c† ̸= c∗), we find that the bias term will be affected by the contextual mismatch

E[(Y − f̂(x0, c
†))2|X = x0] =σ2

ϵ + (E[f̂(x0, c
†)]− f(x0, c

∗))2 + E[
(
f̂(x0, c

†)− E[f̂(x0, c
†)]

)2
]

=Irreducible error + Context bias2 +Variance .
(34)

Since the incorrect context assumption would create a strong bias, we refer to this term as context bias to distinguish
it from the bias in the stationary case.

Unexpected uncertainty. Next we will analyse the dynamics of the prediction uncertainty by looking at the mis-
match between the true uncertainty σ2 and the expected uncertainty σ̂2 before and after a change of context. So far,
to simplify the notation, we only demonstrated how to decompose the conditional expected squared prediction error
given the observables x0. However the analogous decomposition can be made for the full expectation (taken over the

intrinsic stochasticity of f̂ and over ϵ, but also over the observables X)

σ2(cm) = E[(Y − f̂(X, cm))2] , (35)

which is the estimation target of the expected prediction uncertainty σ̂2, see equation (6). Before a change of context
— in case the correct context is assumed (cm = c∗) and the uncertainty estimator σ̂2 has converged, σ̂2 = σ2(cm) —
we get

σ̂2 = σ2(c∗) =E[(Y − f̂(X, c∗))2]

=

∫
E[(Y − f̂(x0, c

∗))2|X = x0]P (X = x0)dx0

=

∫
(Irreducible error + Bias2 +Variance)P (X = x0)dx0 .

(36)

In a scenario, in which learning of f̂ has converged successfully (Bias2 = 0), a sudden change of context would increase
the squared error by inducing a context bias, see equation (34). This increase in uncertainty can be quantified by the
unexpected uncertainty, which is obtained by subtracting the true uncertainty just after a change of context σ2(c†),
with the expected uncertainty just before the change of context σ̂2 = σ2(c∗), equation (36). Indeed, we find that the
unexpected increase in uncertainty, which can be attributed to the change of context, equates to

σ2(c†)− σ̂2 =E[(Y − f̂(x0, c
†))2]− σ̂2

=

∫
E[(Y − f̂(x0, c

†))2|X = x0]P (X = x0)dx0 − σ2(c∗)

=

∫
(Irreducible error + Context bias2 +Variance)P (X = x0)dx0

−
∫

(Irreducible error + Bias2 +Variance)P (X = x0)dx0

=

∫
(Context bias2 − Bias2)P (X = x0)dx0 .

(37)

In equation (37), we assumed that the variance term was independent on the assumed context C, which is trivial in

case the estimator f̂ is not stochastic at all. Finally, if learning of f̂ had perfectly converged (Bias2 = 0) prior to the
change of context,

σ2(c†)− σ̂2 = σ2(c†)− σ2(c∗) =

∫
Context bias2P (X = x0)dx0 . (38)

Therefore, in an idealized setting, the unexpected increase in uncertainty following the change of context becomes
equal to the contextual uncertainty. Hence, unexpected uncertainty can be used to estimate contextual uncertainty.
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Finally, we can note that while we didn’t explicitly write the effect of the distracting inputs for this non-stationary
formulation, their contribution is also part of the Context bias2 term.

4 Explained and unexplained variance

Predictive models are commonly evaluated in terms of the fraction of variance unexplained or variation explained.
Here we reiterate this formalism to provide perspective on the estimates of predictive uncertainty σ̂2 and confidence
c, see equation (7). The expected squared prediction error σ2 between a prediction target R and a model prediction
Q is a general metric of the prediction loss,

σ2 = E[(R− Q̂)2] . (39)

It is commonly also referred to as the residual variance or unexplained variance. This can be compared to the intrinsic
variance of the target

Var(R) = E[(R− E[R])2] . (40)

By taking the difference between the intrinsic variance and the unexplained variance, we get the variance explained
VE (also referred to as explained variation)

VE = ⌊Var(R)− σ2⌋ . (41)

The VE quantifies how much the prediction error is reduced by the model Q̂ compared to using the unconditional
expected value E[R] as an estimate. By dividing the unexplained variance σ2 with the intrinsic variance, we get the
fraction of variance unexplained FVU,

FVU = σ2/Var(R) . (42)

The analogous can be done to get the fraction of variance explained FVE, commonly referred to as coefficient of
determination R2,

R2 = VE/Var(R) =

⌊
1− σ2

Var(R)

⌋
= ⌊1− FVU⌋ = FVE . (43)

With this formalism at hand, the expected uncertainty σ̂2, which is an online estimator of σ2, can be viewed as an
internal representation of the unexplained variance. On the other hand, the prediction confidence

c =

⌊
1− σ̂2

σ2
max

⌋2

, (44)

as defined in equation (7), represents an internal estimate of FVE2, the square of the fraction of variance explained,
see equation (43). The rectifier function ensures that the confidence remains zero, even if the model Q̂ is a worse
estimator than E[R]. While this situation would typically not be considered in stationary contexts, changes of context
can lead the squared prediction error σ2 to rise above the intrinsic variance.

Note: Alternatively, we could have first introduced an objective prediction confidence as c = FVE2 and then

the subjective estimated confidence as ĉ =
⌊
1− σ̂2/σ2

max

⌋2
. However, for simplicity we directly defined the internal

representation of the prediction confidence as c, hence dropping the .̂ from ĉ, see equation (44).

5 Computing the reward variance

In the go/no-go sensory discrimination task, the distribution of the rewards R depend on the action selection proba-
bilities. While it would be possible to continuously estimate the variance of the rewards for a changing distribution of
action selection probabilities, this would require an online estimator. For simplicity, we use a fixed value σ2

max, which
was set to the variance in case of a uniformly random action selection policy π(aGO|s1) = π(aGO|s2) = π(aNG|s1) =
π(aNG|s2) = 0.5. The value σ2

max = 0.5 can be shown by

σ2
max = E[(R− E[R])2] = E[R2] (45.1)

=
∑
R

p(R)R2 =
∑

s∈{s1,s2}

p(s)
∑

a∈{aGO,aNG}

π(a|s)
∑
R

p(R|s, a)R2 (45.2)

=
∑

s∈{s1,s2}

1

2

∑
a∈{aGO,aNG}

1

2

∑
R

p(R|s, a)R2 (45.3)

=
1

4

∑
s

∑
a

∑
R

p(R|s, a)R2 (45.4)
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=
1

4
(R(Hit)2 +R(CR)2 +R(FA)2 +R(Miss)2) (45.5)

=
1

4
(12 + 02 + (−1)2 + 02) = 0.5 . (45.6)

Equation (45.3) used the uniformity of stimulus sampling, meaning p(s1) = p(s2) = 0.5. Equations (45.5) and (45.6)
used that, conditioned on action and stimulus, the reward outcomes are deterministic (p(R|s, a) ∈ {0, 1}), and the
rewards R were {1,−1, 0} for Hit, FA and either CR or Miss respectively. Equation (45.1) used E[R] = 0. This can be
demonstrated by

E[R] =
∑
R

p(R)R

=
∑
s

p(s)
∑
a

π(a|s)
∑
R

p(R|s, a)R

=
1

4

∑
s

∑
a

∑
R

p(R|s, a)R

=
1

4
(1 + 0− 1 + 0) = 0 .

(46)

Note: in the same way that σ̂2 can be simultaneously interpreted both as the estimate of the variance unexplained
by the predictor and as the expected prediction uncertainty, σ2

max can be viewed under both lenses. On one side, it
represents the variance of the reward, which can be used to compute the fraction of variance unexplained that appears
in the coefficient of determination. On the other side, σ2

max can be viewed as the prediction uncertainty of the most
simple estimator R̂ = E[R]. This explains, why the predictive confidence is zero, if the expected uncertainty σ̂2 is
greater than σ2

max, see equation (7).

6 Derivation of the confidence loss

The OFC activity at stimulus time is simulated as a prediction of the confidence loss CL. Confidence loss is modeled
as being elicited by unexpected outcomes leading to a decrease in predictive confidence. The change in predictive
confidence c is quantified by taking the difference in confidence between trial t+ 1 and trial t:

∆c = ct+1 − ct =

⌊
1−

σ̂2
t+1

σ2
max

⌋2

−
⌊
1− σ̂2

t

σ2
max

⌋2

. (47)

We ask how a change ∆σ̂2 = σ̂2
t+1− σ̂2

t in the predictive uncertainty maps to a change ∆c in the predictive confidence.
For this, we calculated the derivative of c with respect to σ̂2,

dc

dσ̂2
=

d

dσ̂2

⌊
1− σ̂2

σ2
max

⌋2

= −
⌊
1− σ̂2

σ2
max

⌋
2

σ2
max

= − 2
√
c

σ2
max

. (48)

For small ∆σ̂2 we can there for approximate

∆c ≈ dc

dσ̂2
∆σ̂2 = − 2

√
c

σ2
max

∆σ̂2 . (49)

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.615819doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.30.615819


The same result can be obtained with finite time differences. For notational simplicity we assume that σ̂2 ∈ [0, σ2
max],

so that we can neglect the rectifier function ⌊·⌋. We then find

∆c =

(
1−

σ̂2
t+1

σ2
max

)2

−
(
1− σ̂2

t

σ2
max

)2

= −2
σ̂2
t+1 − σ̂2

t

σ2
max

+

(
σ̂2
t+1

σ2
max

)2

−
(

σ̂2
t

σ2
max

)2

= −2 ∆σ̂2

σ2
max

+

(
∆σ̂2 + σ̂2

t

σ2
max

)2

−
(

σ̂2
t

σ2
max

)2

=
1

σ2
max

(
−2∆σ̂2 +

(∆σ̂2)2 + 2∆σ̂2σ̂2
t

σ2
max

)
=

2∆σ̂2

σ2
max

(
−1 + σ̂2

t

σ2
max

)
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(50)

Confidence loss can therefore be approximated as

CL = ⌊−∆c⌋ =
⌊
2∆σ̂2

σ2
max

(
1− σ̂2

t
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max

)
−O

((
∆σ̂2

)2)⌋
≈

⌊
2∆σ̂2
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max

(
1− σ̂2

t

σ2
max

)⌋
=

2

σ2
max

·
√
ct · ⌊∆σ̂2⌋ .

(51)

In the last step, we again made use of the fact that σ̂2 ∈ [0, σ2
max] (or respectively that ct ∈ [0, 1]).
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Fig. S1 Network map of the model and its equations. a, Map of the gain modulation apparatus without the lOFC and using pure
policy gradient for action selection. This model was used in the simulations for Fig. 1 to demonstrate, how apical gain amplification based
on value facilitates online policy gradient learning from sensory representations encoding distracting information. The numbers in blue refer
to the equation numbers for mathematical descriptions. b, Network describing how the lOFC activity was modeled for the simulations in
Fig. 2, at which point the top-down influence of the lOFC to the sensory representation z was not yet included. In order to nonetheless
use a realistic evolution of the action selection performance, the policy was replaced by a fixed trace dictating the evolution of the correct
action probability p(aopt). c, Network schematic of the full model containing the two suggested top-down influences of the lOFC onto the
sensory representation (one via SST interneurons and one switching the context representation xcxt). d, Fixed evolution of the correct
action probability used in the simulations described in panel b.
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Fig. S2 Reward association amplifies stimulus response. a, Calcium imaging of mouse S1 during the stimulus presentation window
(50, 50 neurons from 4 mice for LN, LE respectively), either before (LN) or after acquisition (LE) of a go/no-go texture discrimination
task. Hit trials occur when the reward associated stimulus (s1) was correctly responded to with the go action. CR trials occur when the
unrewarded stimulus (s2) was correctly responded to with the no-go action. b, Summed firing rates of the simulated sensory neurons,∑

i zi, depending on the sensory stimulus. Stimulus 1 (s1) is associated with reward and stimulus 2 (s2) is not. Statistical differences were
tested with two-tailed, independent samples T-tests with Bonferroni corrections.
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Fig. S3 Signal-to-noise ratio determines learning. a, Final performance for the model (see panel a) without gain modulation
depending on the number of distracting neurons (Nd) and the signal-to-noise ratio (SNR), see equation (13). b, From panel b, we suspect
that the signal-to-noise ration (SNR) makes a good prediction for the final performance of the model without gain modulation. This can be
emphasized by plotting the performances, but only with regard to the signal-to-noise ratio. Each point corresponds to a point from panel a.
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Fig. S4 Convex policy for action selection in non-stationary environment. a, Schematic of the convex action selection policy,
which weighs between an exploitation policy and an exploration policy according to the prediction confidence. b, Cumulative distributions
of number of trials necessary to reach expert performance for either the original and the reversed rule. This evolution is plotted for the
policy gradient method (PolGrad) and for the convex policy (Convex) in both cases without any distractors. In both cases the parameters
were optimized for the final performance after the rule reversal. c, Two-dimensional comparison of the time to reach expertise for the
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Fig. S5 Artificial reset of top-down modulation upon rule reversal. a, The ‘Reset values’ model helps us study the importance
of top-down gain adaptation during reversal learning by artificially resetting the apical modulation apparatus after a rule change (see
Fig. 1e for comparison). Upon rule reversal, the reward predictor and the top-down apical synapses are reinitialized and restart learning
from scratch, which negates any bias produced by learning from the previous rule. b, Comparing the performance traces of different gain
adaptation algorithms shows that apical dendrite inhibition after a rule reversal can help unbias the sensory representation and support
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duration of 100 trials after the rule reversal. The fact that the ‘Fake SST’ model adapted almost as well as the artifical ‘Reset values’ model
shows that well timed apical top-down inhibition via SST interneurons can provide a biological mechanism to unbias the sensory top-down
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Fig. S6 Alternative parameter optimization. a, The main model parameters (used in the main figures) are derived to be the same in
the simulations where the lOFC is intact or silenced (see SI). For completeness purposes, here we also show the performance of the model
without lOFC (-lOFC), where the parameters are optimized for performance in the original rule (L-Opt). These are compared to the model
with lOFC (+lOFC), where all parameters are optimized for performance in the reversed rule (R-Opt). b, The cumulative distribution of
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Opt (-lOFC) and the same for the model with lOFC optimized for the reversal phase, R-Opt (+lOFC). c, Comparison of the performance
traces the model without lOFC optimized for the learning phase (L-Opt without lOFC, yellow) and the model with lOFC optimized for
the reversal phase (R-Opt with lOFC, blue) with the model optimized jointly for the reversal phase (R-Opt mixed) either with the lOFC
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Fig. S8 lOFC as context switch. a, Average performance trace during five sequential rule reversals (top row) as well as the evolution
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Table 1 Model combinations

Action-selection policy Gain modulation Figure occurrence

policy gradient none 1efh, S3, S4bc
policy gradient reward-guided amplification (without lOFC) 1hi
fixed policy reward-guided amplification (without lOFC) 2cf, S1d
convex policy none S4, S7
convex policy reward-guided amplification (without lOFC) 2b, 3, S4f, S5b, S6
convex policy reward-guided amplification + lOFC targets SST 3, 4, 5, S2, S6, S8
convex policy reward-guided amplification + lOFC switches context representation 4g, S8

Table 2 Fixed parameter values

Parameter description Mathematical symbol Parameter value

Maximal apical gain gmax 10
Reward value Rreward 1
Punishment value Rpunishment −1
L1 regularization factor λV 1/N
Excitatory apical weight learning rate ηap 0.1
Maximal excitatory apical weight wap

max gmax − 1 = 9
Minimal excitatory apical weight wap

min 0
Uncertainty learning rate ησ 0.03
lOFC learning rate ηlOFC 0.03
SST interneuron baseline activity rSST

0 0.1
Q-value policy temperature TQ 10
Minimal policy exploration ϵϕ 0.01
Policy sigmoid bias bϕ 99
Maximal uncertainty σ2

max 0.5
CPE threshold for context switch θswitch 1
Confidence threshold for context switch cswitch 0.95

Table 3 Optimized parameter values

Model description ηπ ηV ηQ rVIP
0 wSST Optimized for Figure occurrence

Policy gradient without gain M N/A N/A N/A N/A Learning perf. 1efh, S3
Policy gradient with gain (without lOFC) M M N/A N/A N/A Learning perf. 1hi
Fixed policy with gain (without lOFC) N/A 101.25† 10−1.5† N/A N/A Reversal time 2cf, S1d
Convex policy with gain (without lOFC) 10−2.5 100.75 10−1.5 N/A N/A Reversal time 3, S6

Convex policy with gain (with lOFC) 10−2.5†
101.25 10−1.5†

10−0.75 101.5 Reversal time 3, 4, 5, S2, S6, S8
Policy gradient without gain (no noise) N/A 10−1 N/A N/A N/A Reversal time S4bc
Convex policy without gain (no noise) 101.5 N/A 101.5 N/A N/A Reversal time S4bc, S7
Convex policy without gain M N/A M N/A N/A Learning perf. S4def
Convex policy with gain (without lOFC) M M M N/A N/A Learning perf. 2b, S4f
Convex policy with gain (without lOFC) 10−1.5 101.25 101.5 N/A N/A Learning time S5, S6

N/A stands for no value available because the parameter is not applicable for the model in question
M stands for multiple values available, because the optimization was run multiple times (e.g. for different numbers of distractors)
† means that the parameter value was copied from another parameter optimization procedure.
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Algorithm 1 Simulation of one trial

function SimulateTrial(T,xbas,xc,wap, π, V̂, Q̂, σ̂,CPE)
xbas ← T.getInput() ▷ Get the bottom-up sensory inputs for the current trial T
rSST ← getSST (CPE) ▷ Compute SST interneuron activity, equation (10)
z ← xbas ⊙ g(wapxc − rSST) ▷ Compute sensory representations, equations (1, 2)
wap.update(V̂,z) ▷ Update excitatory top-down weights, equation (5
a← π(z) ▷ Decide the action to take, equation (11)
Ω← T.Outcome(a) ▷ Observe the outcome for the trial T given action a
R← T.Reward(Ω) ▷ Observe the reward for the trial T given action a
V̂.update(R) ▷ Update state value estimator, equation (4)
π.update(R) ▷ Update policy network, equation (21)
CL← getCL(σ̂, R− Q̂(z, a)) ▷ Compute confidence loss, equation (8)
CPE.update(CL) ▷ Update CPE, equation (9)
σ̂.update(R− Q̂(z, a)) ▷ Update uncertainty estimate, equation (6)
Q̂.update(Ω) ▷ Update state action value estimator, equation (15)
xc.update(CPE, c) ▷ Switch context representation (if CPE > θswitch and c > cswitch)

end function

Algorithm 2 Iterative grid search parameter optimization

function TestParams(parameters sets, best loss) ▷ Find the best set of parameters out of multiple sets
for p = 0 to parameters sets.Size()− 1 do ▷ Iterate over all sets of parameters of the grid

parameters← parameters sets[p] ▷ The current set of parameters
loss← Simulate(parameters) ▷ Simulate the model (64 times)
if loss < best loss then ▷ If the loss is smaller than the currently best loss

best loss← loss ▷ Update the best loss
best parameters← parameters ▷ Update the best set of parameters

end if
end for
return best loss, best parameters

end function
function OptimizeParams

iterations← 2 ▷ Number of grid tightening procedures to run
parameters sets← InitialGrid() ▷ Get the initial logarithmic parameter grid for the model
loss← inf ▷ The loss for the best set of parameters
loss, best parameters← TestParameters(parameters sets, loss) ▷ Find the best set of parameters
for i = 1 to iterations do ▷ Tighten the resolution of the grid search multiple times

converged← False ▷ Whether the grid search has converged for a given resolution
while not converged do

parameters sets← surroundGrid(best parameters, i) ▷ Get new logarithmic parameter grid
loss, parameters← TestParameters(parameters sets, loss) ▷ Find the best set of parameters
if parameters = best parameters then ▷ If the best parameters have not changed

converged← True ▷ The search has converged for this grid resolution
else

best parameters← parameters ▷ Update best parameter set
end if

end while
end for
return best parameters

end function
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