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We studied the hypothesis that synaptic dynamics is controlled by three
basic principles: (1) synapses adapt their weights so that neurons can
effectively transmit information, (2) homeostatic processes stabilize the
mean firing rate of the postsynaptic neuron, and (3) weak synapses adapt
more slowly than strong ones, while maintenance of strong synapses is
costly. Our results show that a synaptic update rule derived from these
principles shares features, with spike-timing-dependent plasticity, is sen-
sitive to correlations in the input and is useful for synaptic memory.
Moreover, input selectivity (sharply tuned receptive fields) of postsynap-
tic neurons develops only if stimuli with strong features are presented.
Sharply tuned neurons can coexist with unselective ones, and the distri-
bution of synaptic weights can be unimodal or bimodal. The formulation
of synaptic dynamics through an optimality criterion provides a simple
graphical argument for the stability of synapses, necessary for synaptic
memory.
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1 Introduction

Synaptic changes are thought to be involved in learning, memory, and corti-
cal plasticity, but the exact relation between microscopic synaptic properties
and macroscopic functional consequences remains highly controversial. In
experimental preparations, synaptic changes can be induced by specific
stimulation conditions defined through pre- and postsynaptic firing rates
(Bliss & Lomo, 1973; Dudek & Bear, 1992), postsynaptic membrane potential
(Kelso, Ganong, and Brown, 1986), calcium entry (Malenka, Kauer, Zucker,
& Nicoll, 1988; Lisman, 1989), or spike timing (Markram, Lübke, Frotscher,
& Sakmann, 1997; Bi & Poo, 2001. In the theoretical community, conditions
for synaptic changes are formulated as synaptic update rules or learning
rules (von der Malsburg, 1973; Bienenstock, Cooper, & Munroe, 1982; Miller,
Keller, & Stryker, 1989) (for reviews, see Gerstner & Kistler, 2002; Dayan &
Abbott, 2001; Cooper, Intrator, Blais, & Shouval, 2004), but the exact features
that make a synaptic update rule a suitable candidate for cortical plasticity
and memory are unclear.

From a theoretical point of view, a synaptic learning rule should be
(1) sensitive to correlations between pre- and postsynaptic neurons (Hebb,
1949) in order to respond to correlations in the input (Oja, 1982); they
should (2) allow neurons to develop input selectivity (e.g., receptive fields)
(Bienenstock et al., 1982; Miller et al. 1989), in the presence of strong input
features, but (3) distribution of synaptic strength should remain unimodal
otherwise (Gütig, Aharonov, Rotter, & Sompolinsky, 2003). Furthermore (4)
synaptic memories should show a high degree of stability (Fusi, Drew, &
Abbott, 2005) and nevertheless remain plastic (Grossberg, 1987). Moreover,
experiments suggest that plasticity rules are (5) sensitive to the presynaptic
firing rate (Dudek & Bear, 1992), but (6) depend also on the exact timing of
the pre- and postsynaptic spikes (Markram et al., 1997, Bi & Poo, 2001).

Many other experimental features could be added to this list, for exam-
ple, the role of intracellular calcium and of NMDA receptors, but we will
not do so (see Bliss & Collingridge, 1993, and Malenka & Nicoll, 1993, for
reviews).

The items in the above list are not necessarily exclusive, and the relative
importance of a given aspect may vary from one subsystem to the next;
for example, synaptic memory maintenance might be more important for a
long-term memory system than for primary sensory cortices. Nevertheless,
all of the above aspects seem to be important features of synaptic plas-
ticity. However, the development of theoretical learning rules that exhibit
all of the above properties has posed problems in the past. For example,
traditional learning rules that have been proposed as an explanation of
receptive field development (Bienenstock et al., 1982; Miller et al., 1989)
exhibit a spontaneous separation of synaptic weights into two groups, even
if the input shows no or only weak correlations. This is difficult to rec-
oncile with experimental results in visual cortex of young rats, where a
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unimodal distribution was found (Sjöström, Turrigiano, & Nelson, 2001).
Moreover model neurons that specialize early in development on one sub-
set of features cannot readily readapt later. Other learning rules, however,
that exhibit a unimodal distribution of synaptic weights (Gütig et al., 2003)
do not lead to a long-term stability of synaptic changes.

In this article, we show that all of features 1 to 6 emerge naturally in a
theoretical model where we require only a limited number of objectives that
will be formulated as postulates. In particular, we study how the conflicting
demands on synaptic memory maintenance, plasticity, and distribution of
synaptic synapses could be satisfied by our model. Although the postulates
are rather general and could be adapted to arbitrary neural systems, we
had in mind excitatory synapses in neocortex or hippocampus and exclude
inhibitory synapses and synapses in specialized systems such as the calix of
Held in the auditory pathway. Our arguments are based on three postulates:

A. Synapses adapt their weights so as to allow neurons to efficiently
transmit information. More precisely, we impose a theoretical postu-
late that the mutual information I between presynaptic spike trains
and postsynaptic firing be optimized. Such a postulate stands in the
tradition of earlier theoretical work (Linsker, 1989; Bell & Sejnowski,
1995), but is formulated here on the level of spike trains rather than
rates.

B. Homeostatic processes act on synapses to ensure that the long-term
average of the neuronal firing rate becomes close to a target rate
that is characteristic for each neuron. Synaptic rescaling and related
mechanism could be a biophysical implementation of homeostatis
(Turrigiano & Nelson, 2004). The theoretical reason for such a pos-
tulate is that sustained high firing rates are costly from an energetic
point of view (Laughlin, de Ruyter van Steveninck, and Anderson,
1998; Levy & Baxter, 2002).

C. C1: Maintenance of strong synapses is costly in terms of biophysi-
cal machinery, in particular, in view of continued protein synthesis
(Fonseca, Nägerl, Morris, & Bonhoeffer, 2004). C2: Synaptic plasticity
is slowed for very weak synapses in order to avoid a (unplausible)
transition from excitatory to inhibitory synapses.

Optimality approaches have a long tradition in the theoretical neuro-
sciences and have been utilized in two different ways. Firstly, optimality
approaches allow deriving strict theoretical bounds against which per-
formance of real neural systems can be compared (Barlow, 1956; Laugh-
lin, 1981; Britten, Shadlen, Newsome, & Movshon, 1992; de Ruyter van
Steveninck & Biale, 1995). Second, they have been used as a conceptual
framework since they allow connecting functional objectives (e.g., “be re-
liable!”) and constraints (e.g., “don’t use too much energy!”) with electro-
physiological properties of single neurons and synapses or neuronal pop-
ulations (Barlow, 1961; Linsker, 1989; Atick & Redlich, 1990; Levy & Baxter,
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2002; Seung, 2003). Our study, a derivation of synaptic update rules from
an optimality viewpoint, follows this second, conceptual approach.

2 The Model

2.1 Neuron Model. We simulated a single stochastic point neuron
model with N = 100 input synapses. Presynaptic spikes at synapse j are de-
noted by their arrival time t f

j and evoke excitatory postsynaptic potentials
(EPSPs) with time course exp[−(t − t f

j )/τm] for t ≥ t f
j , where τm = 20 ms is

the membrane time constant. Recent experiments have shown that action
potentials propagating back into the dendrite can partially suppress EPSPs
measured at the soma (Froemke, Poo, & Dan, 2005). Since our model neuron
has no spatial structure, we included EPSP suppression by a phenomenolog-
ical amplitude factor a (t f

j − t̂) that depends on the time difference between
presynaptic spike arrival and the spike trigger time t̂ of the last (somatic)
action potential of the postsynaptic neuron.

In the absence of EPSP suppression, the amplitude of a single EPSP at
synapse j is characterized by its weight w j and its duration by the mem-
brane time constant τm. Summation of the EPSPs caused by presynaptic
spike arrival at all 100 explicitly modeled synapses gives the total postsy-
naptic potential

u(t) = ur +
N∑

j=1

w j

∑

t f
j <t

exp

(

−
t − t f

j

τm

)

a (t f
j − t̂), (2.1)

where ur = −70 mV is the resting potential and the sum runs over all spike
arrival times t f

j in the recent past, t̂ < t f
j ≤ t. The EPSP suppression factor

takes a value of zero if t f
j < t̂ and is modeled for t f

j ≥ t̂ as exponential
recovery a (t f

j − t̂) = 1 − exp[−(t f
j − t̂)/τa ] with time constant τa = 50 ms

(see Figure 1a) unless stated otherwise. The parameters w j for 1 ≤ j ≤ N
denote the synaptic weight of the N = 100 synapses and are updated using
a learning rule discussed below.

In order to account for unspecific background input that was not mod-
eled explicitly, spikes were generated probabilistically with density

ρ(t) = ρr + [u(t) − ur ] · g, (2.2)

where ρr = 1 Hz is the spontaneous firing rate (in the absence of spike
input at the 100 explicitly modeled synapses) and g = 12.5 Hz/mV is a gain
factor. Thus, the instantaneous spike density increases linearly with the total
postsynaptic potential u(t). Note, however, that due to EPSP suppression,
the total postsynaptic potential increases sublinearly with the number of
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Figure 1: Properties of the stochastically spiking neuron model. (a) Neuron
model and EPSP suppression. EPSPs arriving just after a postsynaptic spike at
t = 0 are attenuated by a factor (1 − e−t/τa ) and recover exponentially to their
maximal amplitude w j . (b) The output firing rate ρ̄ of a neuron that receives
stochastic spike input at rate ν at all 100 synapses. Each presynaptic spike
evokes an EPSP with maximal amplitude w j = 0.4 mV. (c) Interspike interval
(ISI) distribution with input frequency ν = 10 Hz (solid line), 20 Hz (dashed
line), and 30 Hz (dotted line) at all 100 synapses. (d) Autocorrelation function
of postsynaptic action potentials at an input frequency of 10 Hz (solid line), 20
Hz (dashed line), and 30 Hz (dotted line).

input spikes, and so does the mean firing rate of the postsynaptic neuron
(see Figure 1b).

The neuron model is simulated in discrete time with time steps of $t =
1 ms on a standard personal computer using custom-made software written
in Matlab.

2.2 Objective Function. Postulates A and B have been used previously
(Toyoizumi, Pfister, Aihara, & Gerstner, 2005a) and lead to an optimality
criterion L′ = I − γ D, where I is the mutual information between presy-
naptic input and postsynaptic output and D a measure of the distance of
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the mean firing rate of the neuron from its target rate. The parameter γ

scales the importance of the information term I (postulate A) compared to
the homeostatic term D (postulate B). It was shown that optimization of
L′ by gradient ascent yields a synaptic update rule that shows sensitivity
to correlations (see point 1 above), input selectivity (see point 2 above),
and depends on presynaptic firing rates (see point 5 above) (Toyoizumi
et al., 2005a). However, while the learning rule in Toyoizumi et al. (2005a)
showed some dependence on spike timing, it did not (without additional
assumptions) have the typical features of Spike-timing-dependent plastic-
ity (STDP) as measured in vitro (point 6 above), and it exhibited, like earlier
models (Bienenstock et al., 1982), spontaneous synaptic specialization, even
for very weak input features, which is in contrast to point 3 above.

In this earlier theoretical study, synaptic potentiation was artificially
stopped at some upper bound wmax (and synaptic depression was stopped
at weight w = 0), so as to ensure that weights w stayed in a regime 0 ≤
w ≤ wmax. In this letter, we take the more realistic assumption that strong
weights are more likely to show depression than weaker ones but do not
impose a hard upper bound. Similarly, we require that adaptation speed is
slowed for very weak synapses but do not impose a hard bound at zero
weight. We will show that with these assumptions, the resulting synaptic
update rule shows properties of STDP (see point 6 above), is suitable for
memory retention (see point 4 above), and leads to synaptic specialization
when driven by strong input (see point 3 above), while keeping properties
1, 2, and 5, which were found in Toyoizumi et al. (2005a).

To avoid hard upper bounds for the synapses, we use postulate C1 and
add a term & to the optimality criterion L′ that is proportional to w2 (i.e., the
square of the synaptic weight) and proportional to the presynaptic firing
rate. This term comes with a negative sign, since a cost is associated with
big weights. Hence, from our optimality viewpoint, synapses change so as
to maximize a quantity

L = I − γ D − λ&, (2.3)

where I is the information to be maximized, D is a measure of the fir-
ing rate mismatch to be minimized, and & is the cost induced by strong
synapses to be minimized. Factors γ and λ control the relative importance
of the three terms. In other words, synapses adjust their weights so as to
be able to transmit information while keeping the mean firing rate and
synaptic weights at low values. Thus, our three postulates A, B, and C
give rise to one unified optimality criterion L. We hypothesize that a sig-
nificant part of findings regarding synaptic potentiation and depression
can be conceptually understood as the synapse’s attempt to optimize the
criterion L.
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The learning rule used for the update of the synaptic weights w j is
derived from the objective function 2.3, L = I − γ D − λ&, which contains
three terms.

The first term is the mutual information between the ensemble of 100
input spike trains (spanning the interval of a single trial from 0 to T ; the
ensemble of all presynaptic trains is formally denoted by X(T) = {xj (t) =∑

t f
j
δ(t − t f

j )| j = 1, . . . , 100, 0 ≤ t < T}) and the output spike train of the
postsynaptic neuron over the same interval (denoted by Y(T) = {y(t) =∑

t f
post

δ(t − t f
post)|0 ≤ t < T}, where t f

post represent output spike timing), that
is,

I =
〈
log

P(Y|X)
P(Y)

〉

Y,X
, (2.4)

where angular brackets 〈 · 〉Y,X denote averaging over all combinations of
input and output spike trains.1 Here, P(Y|X) is the conditional probability
density of our stochastic neuron model to generate a specific spike train Y
with (one or several) spike times {t f

post} during a trial of duration T given
100 known input spike trains X. This conditional probability density is
given as a product of the instantaneous probabilities ρ(t f

post) of firing at the
postsynaptic spike times {t f

post} and the probability of not firing elsewhere,
that is,

P(Y|X) =




∏

t f
post

ρ(t f
post)



 exp
[
−

∫ T

0
ρ(t)dt

]
. (2.5)

Similarly, P(Y) is the probability of generating the same output spike
train Y not knowing the input. Here “not knowing the input” implies that
we have to average over all possible inputs so as to get the expected in-
stantaneous firing density ρ̄(t) at time t. However, because of the EPSP
suppression factor, the expected firing density will also depend on the last
output spike before t. We therefore define

ρ̄(t) = 〈ρ(t)〉X(t)|Y(t), (2.6)

that is, we average over the inputs but keep the knowledge of the previous
output spikes t f

post < t. P(Y) is then given by a formula analogous to equa-
tion 2.5, but with ρ replaced by ρ̄. Hence, given our neuron model, both

1 From now on, when X or Y are without argument, we take implicitly X ≡ X(T) and
Y ≡ Y(T), i.e., the spike trains over the full interval T .
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P(Y|X) and P(Y) in equation 2.4 are well defined. The information term I
of equation 2.4 is the formal instantiation of postulate A.

The second term is the homeostatic term

D =
〈
log

P(Y)
P̃(Y)

〉

Y
, (2.7)

which compares the actual distribution of output spike trains P(Y) with
that of an ideal distribution P̃(Y) generated by the same neuron firing at a
target rate of ρ̃ = 5 Hz—formula (2.5) with ρ replaced by ρ̃. Mathematically
speaking, D is the Kullback-Leibler distance between two distributions
(Cover & Thomas, 1991), but in practice, we may think of D simply as a
measure of the difference between actual and target firing rates (Toyoizumi,
et al., 2005a). The term D is our mathematical formulation of postulate B.

The third term is the cost associated with strong synapses. We assume
that the cost increases quadratically with the synaptic weights but that only
synapses that have been activated in the past contribute to the cost. Hence,
the mathematical formulation of postulate C1 yields a cost

& = 1
2

∑

j

w2
j
〈
nj

〉
X , (2.8)

where nj is the number of presynaptic spikes that have arrived at synapse j
during the duration T of the interval under consideration. Cost terms that
are quadratic in the synaptic weights are common in the theoretical litera-
ture (Miller & MacKay, 1994), but the specific dependence on presynaptic
spiking induced by the factor nj in equation 2.8 is not. The dependence
of & on presynaptic spike arrival means that in our model, only activated
synapses contribute to the cost. The specific formulation of & is mainly due
to theoretical reasons to be discussed below. The intuition is that activa-
tion of a synapse in the absence of any postsynaptic activity can weaken
the synapse if the factor λ is sufficiently positive (see also Figure 3d). The
restriction of the cost to previously activated synapses is reminiscent of
synaptic tagging (Frey & Morris, 1997; Fonseca et al., 2004), although any
relation must be seen as purely hypothetical.

The three terms are given a relative importance by choosing γ = 0.1 (for
a discussion of this parameter, see Toyoizumi et al., 2005a) and λ = 0.026 so
as to achieve a baseline of zero in the STDP function (see appendix A).

2.3 Synaptic Update Rule. We optimize the synaptic weights by gradi-
ent ascent

$w j = α(w j )
∂L
∂w j

, (2.9)
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with a weight-dependent update rate α(w j ). According to postulate C2,
plasticity is reduced for very small weights. For simplicity, we chose

α(w j ) = 4 · 10−2 w4
j

w4
j +w4

s
, where ws = 0.2 mV, that is, learning slows for weak

synapses with EPSP amplitudes around or less than 0.2 mV. Note that up-
dates according to Equation 2.9 are always uphill; however, because of the
w j dependence of α, the ascent is not necessarily along the steepest gradient.

Using the same mathematical arguments as in Toyoizumi et al. (2005a),
we can transform the optimization by gradient ascent into a synaptic update
rule. First, differentiating each term, we find

∂ I
∂w j

=
〈

1
P(Y|X)

∂ P(Y|X)
∂w j

log
P(Y|X)

P(Y)

〉

Y,X
, (2.10)

∂ D
∂w j

=
〈

1
P(Y|X)

∂ P(Y|X)
∂w j

log
P(Y)
P̃(Y)

〉

Y,X
, (2.11)

∂&

∂w j
= w j

〈
nj

〉
X . (2.12)

We will rewrite the terms appearing in equations 2.10 and 2.11, by intro-
ducing the auxiliary variables

c j (t) =
dρ/du|u=u(t)

ρ(t)
[y(t) − ρ(t)]

∫ ∞

0
ds ′ε(s ′)xj (t − s ′) (2.13)

and

B post(t) =
[

y(t) log
ρ(t)
ρ̄(t)

− (ρ(t) − ρ̄(t))
]

− γ

[
y(t) log

ρ̄(t)
ρ̃

− (ρ̄(t) − ρ̃)
]

,

(2.14)

Using the definitions in equations 2.13 and 2.14, we find the derivative of
the conditional probability density that appears in equations 2.10 and 2.11:

∂ P(Y|X)
∂w j

= P(Y|X)
∫ T

0
c j (t′)dt′ (2.15)

and

log
P(Y|X)

P(Y)
− γ log

P(Y)
P̃(Y)

=
∫ T

0
B post(t)dt. (2.16)

As a first interpretation, we may say that c j represents the causal correlation
between input and output spikes (corrected for the expected correlation),
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and B post is a function of postsynaptic quantities, namely, the output spikes
y, current firing rate ρ via the membrane potential u, average firing rate ρ̄,
and the target firing rate ρ̃. More precisely, B post compares the actual output
with the expected output and, modulated by a factor γ , the expected output
with the target.

Hence, with the results from equations 2.10 to 2.16, the derivative of the
objective function is written in terms of averaged quantities 〈·〉Y,X as

∂L
∂w j

=
∫ T

0
dt

〈[∫ T

0
c j (t′)dt′

]
B post(t) − λw j x j (t)

〉

Y,X
. (2.17)

An important property of c j is that its average 〈c j 〉Y|X vanishes. On the other
hand, the correlations between c j (t′) and B post(t) are limited by the timescale
τAC of the autocorrelation function of the output spike train. Hence, we can
limit the integration to the relevant timescales without loss of generality
and introduce an exponential cut-off factor with time constant τC > τAC :

C j (t) = lim
ε→+0

∫ t+ε

0
c j (t′)e−(t−t′)/τC dt′. (2.18)

With this factor C j , we find a batch learning rule (i.e., with expectations
over the input and output statistics on the right-hand side) of the form

∂L
∂w j

≈
∫ T

0
dt

〈
C j (t)B post(t) − λw j x j (t)

〉
Y,X . (2.19)

Finally, for slow learning rate α and stationary input statistics, the system
becomes self-averaging (i.e., expectations can be dropped due to automatic
temporal averaging; Gerstner & Kistler, 2002) so that we arrive at the online
gradient learning rule,

dw j

dt
= α(w j )

[
C j (t)B post(t) − λw j x j (t)

]
. (2.20)

See Figure 2 for an illustration of the dynamics of C j and B post . The last
term has the form of a “weight decay” term common in artificial neural
networks (Hertz, Krogh, & Palmer, 1991) and arises from the derivative
of the weight-dependent cost term &. The parameter λ is set such that
dw j/dt = 0 for large enough |t pre − t post| in the STDP in vitro paradigm. A
few steps of calculation (see appendix A) yield λ = 0.026. In our simulations,
we take τC = 100 ms for the cut-off factor in Equation 2.18.

For a better understanding of the learning dynamics defined in equation
2.20, let us look more closely at Figure 2a. The time course $w/w of the
potentiation has three components: first, a negative jump at the moment
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Figure 2: Illustration of the dynamics of C j (top), B post (middle), and $w/w =
(w − winit)/winit (bottom) during a single pair of pre- and postsynaptic spikes
(indicated schematically at the very top). We always start from an initial weight
winit = 4 mV and induce postsynaptic firing at time t post = 0. (a) Pre-before-post
timing with t pre = −10 ms (solid line) induces a large potentiation, whereas
t pre = −50 ms (dashed line) induces almost no potentiation. (b) Due to the EPSP
suppression factor, a post-before-pre timing with t pre = 10 ms (solid line) in-
duces a large depression, whereas t pre = 50 ms (dashed line) induces a smaller
depression. The marks (circle, cross, square, and diamond) correspond to the
weight change due to a single pair of pre- and postsynaptic spike after weights
have converged to their new values. Note that in Figure 3, the corresponding
marks indicate the weight change after 60 pairs of pre- and postsynaptic spikes.

of the presynaptic spike induced by the weight decay term; second, a slow
increase in the interval between pre- and postsynaptic spike times induced
by C j (t)B post(t) > 0; and third, a positive jump immediately after the post-
synaptic spike induced by the singularity in B post combined with a positive
C j .

As it is practically difficult to calculate ρ̄(t) = 〈ρ(t)〉X(t)|Y(t), we estimate ρ̄

by the running average of the output spikes, that is,

τρ̄

dρ̄est

dt
= −ρ̄est(t) + y(t), (2.21)

with τρ̄ = 1 min. This approximation is valid if the characteristics of the stim-
ulus and output spike trains are stationary and uncorrelated. To simulate in
vitro STDP experiments, the initial value of ρ̄est is set equal to the injected
pulse frequency. Other, more accurate estimates of ρ̄est are possible but lead
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to no qualitative change of results (data not shown). In the simulations of
Figures 4 to 6, the initial synaptic strength is set to be winit = 0.4 ± 0.04 mV.

2.4 Stimulation Paradigm

2.4.1 Simulated STDP In Vitro Paradigm. For the simulations of Figure 3,
spike timings t pre = t f

j at synapse j and postsynaptic spike times t post are
imposed with a given relative timing t pre − t post . For the calculation of the
total STDP effect according to a typical in vitro stimulation paradigm, the
pairing of pre- and postsynaptic spikes is repeated until 60 spike pairs have
been accumulated. Spike pairs are triggered at a frequency of 1 Hz except
for Figure 3c, where the stimulation frequency was varied.

2.4.2 Simulated Stochastic Spike Arrival. In most simulations, presynaptic
spike arrival was modeled as Poisson spike input at either a fixed rate (ho-
mogeneous Poisson process) or a modulated rate (inhomogeneous Poisson
process).

For example, for the simulations in Figure 6, with a gaussian profile, spike
arrival at synapse j is generated by an inhomogeneous Poisson process
with the following characteristics. During a segment of 200 ms, the rate is
fixed at ν j = (νmax − ν0) exp[−0.01 ∗ d( j − k)2] + ν0, where ν0 = 1 Hz is the
baseline firing rate and d( j − k) is the difference between index j and k.
The value of k denotes the location of the maximum. The value of k was
reset every 200 ms to a value chosen stochastically between 1 and 100. (As
indicated in the main text, presynaptic neurons in Figure 6 were considered
to have a ring topology, which has been implemented by evaluating the
difference d( j − k) as d( j − k) = min{| j − k|, 100 − | j − k|}.)

However, in the simulations for Figure 5, input spike trains were not
independent Poisson, but we included spike-spike correlations. A correla-
tion index of c = 0.2 implies that between a given pair of synapses, 20% of
spikes have identical timing. More generally, for a given value of c within
a group of synaptic inputs, 100 c percent of spike arrival times are identical
at an arbitrary pair of synapse within the group.

3 Results

The mathematical formulation of postulates A, B, and C1 led to an optimal-
ity criterionL that was optimized by changing synaptic weights in an uphill
direction. In order to include postulate C2, the adaptation speed was made
to depend on the current value of the synaptic weight so that plasticity was
significantly slowed for synapses with excitatory postsynaptic potentials
(EPSPs) of amplitude less than 0.2 mV (see section 2 for details).

As in a previous study based on postulates A and B (Toyoizumi et al.,
2005a), the optimization of synaptic weights can be understood as a synaptic
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Figure 3: The synaptic update rule of the model shares features with STDP.
(a) STDP function (percentage change of EPSP amplitude as a function of t pre −
t post) determined using 60 pre-and-post spike pairs injected at 1 Hz. The initial
EPSP amplitudes are 4 mV (dashed line) and 6 mV (dotted). Marks (circle, cross,
square and diamond) correspond respectively to t pre = −50 ms, t pre = −10 ms,
t pre = 10 ms, and t pre = 50 ms, also depicted on Figure 2. (b) The percentage
change in EPSP amplitude after 60 pre-and-post spike pairs injected at 1 Hz
for pre-before-post timing ((t pre − t post) = −10 ms, solid line) and post-before-
pre timing ((t pre − t post) = +10 ms, dashed line) as a function of initial EPSP
amplitude. Our model results qualitatively resemble experimental data (see
Figure 5 in Bi & Poo, 1998). (c) Frequency dependence of the STDP function:
spike pairs are presented at frequencies of 0.5 Hz (dashed line), 1 Hz (dotted
line), and 2 Hz (dot-dashed line). The STDP function exhibits only a weak
sensitivity to the change in stimulation frequency. (d) STDP function for different
choices of model parameters. The extension of the synaptic depression zone
for pre-after-post timing (t pre − t post > 0) depends on the timescale τa of EPSP
suppression (dot-dashed line, τa = 50 ms; dashed line, τa = 25 ms). The dotted
line shows the STDP function in the absence of a weight-dependent cost term
&. The STDP function exhibits a positive offset indicating that without the cost
term &, unpaired presynaptic spikes would lead to potentiation, a non-Hebbian
form of plasticity.
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update rule that depends on presynaptic spike arrival, postsynaptic spike
firing, the postsynaptic membrane potential, and the mean firing rate of
the postsynaptic neuron. In addition, the synaptic update rule in this study
included a term that decreases the synaptic weight upon presynaptic spike
arrival by a small amount proportional to the EPSP amplitude (see section 2
for details). This term can be traced back to the additional weight-dependent
cost term & in equation 2.3 that accounts for postulate C1.

In order to study the consequences of the synaptic update rule derived
from postulates A, B, and C, we used computer simulations of a model
neuron that received presynaptic spike trains at 100 synapses. Each presy-
naptic spike evoked an EPSP with exponential time course (time constant
τm = 20 ms). In order to account for dendritic interaction between somatic
action potentials and postsynaptic potentials, the amplitude of EPSPs was
suppressed immediately after postsynaptic spike firing (Froemke et al.,
2005) and recovered with time constant τa = 50 ms (see Figure 1a). As a
measure of the weight of a synapse j , we used the EPSP amplitude w j at
this synapse in the absence of EPSP suppression. With all synaptic param-
eters w j set to a fixed value, the model neuron fired stochastically with a
mean firing rate ρ̄ that increases with the presynaptic spike arrival rate (see
Figure 1b), has a broad interspike interval distribution (see Figure 1c), and
has an autocorrelation function with a trough of 10 to 50 ms that is due to
reduced excitability immediately after a spike because of EPSP suppression
(see Figure 1d).

3.1 The Learning Rule Exhibits STDP. In a first set of plasticity exper-
iments, we explored the behavior of the model system under a simulated
in vitro paradigm as used in typical STDP experiments (Bi & Poo, 1998).
In order to study the influence of the pre- and postsynaptic activity on the
changes of weights as predicted by our online learning rule in equation
2.20, we plotted in Figure 2 the postsynaptic factor B post and the correlation
term C j that both appear on the right-hand side of equation 2.20, together
with the induced weight change $w/w as a function of time. Indeed, the
learning rule predicts positive weight changes when the presynaptic spike
occurs 10 ms before the postsynaptic one and negative weight changes
under reversed timing.

For a comparison with experimental results, we used 60 pairs of pre-
and postsynaptic spikes applied at a frequency of 1 Hz and recorded the
total change $w in EPSP amplitude. The experiment is repeated with dif-
ferent spike timings, and the result is plotted as a function of spike timing
difference t pre − t post . As in experiments (Markram et al., 1997; Zhang, Tao,
Holt, Harris, & Poo, 1998; Bi & Poo, 1998, 2001; Sjöström et al., 2001), we
find that synapses are potentiated if presynaptic spikes occur about 10 ms
before a postsynaptic action potential, but are depressed if the timing is
reversed. Compared to synapses with amplitudes in the range of 1 or 2 mV,
synapses that are exceptionally strong show a reduced effect of potentiation
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for pre-before-post timing, or even depression (see Figures 3a and 3b), in
agreement with experiments on cultured hippocampal neurons (Bi & Poo,
1998). The shape of the STDP function depends only weakly on the stimu-
lation frequency (see Figure 3c), even though a significant reduction of the
potentiation amplitude with increasing frequency can be observed.

In a recent experimental study (Froemke et al., 2005), a strong correlation
between the timescale of EPSP suppression (which was found to depend on
dendritic location) and the duration of the long-term depression (LTD) part
in the STDP function was observed. Since our model neuron had no spatial
structure, we artificially changed the time constant of EPSP suppression
in the model equations. We found that indeed only the LTD part of the
STDP function was affected, whereas the LTP part remained unchanged
(see Figure 3d).

In order to study the influence of the weight-dependent cost term & in
our optimality criterion L, we systematically changed the parameter λ in
equation 2.3. For λ = 0, the weight-dependent cost term has no influence,
and because the postsynaptic firing rate is close to the desired rate, synaptic
plasticity in our model is mainly controlled by information maximization.
In this case, synapses with a reasonable EPSP amplitude of one or a few
millivolts are always strengthened, even for post-before-pre timing (see
Figure 3d, dashed line). This can be intuitively understood since an in-
crease of synaptic weight is always beneficial for information transmission
except if spike arrival occurs immediately after a postsynaptic spike. In this
case, the postsynaptic neuron is insensitive, so that no information can be
transmitted. Nevertheless, information transmission is maximal in a situ-
ation where the presynaptic spike occurs just before the postsynaptic one.
The weight-dependent cost term derived from postulate C is essential to
shift the dashed line in Figure 3d to negative values so as to induce synaptic
depression in our STDP paradigm. The optimal value of λ = 0.026, which
ensures that for large spike timing differences |t pre − t post| neither potenti-
ation nor depression occurs, has been estimated from a simple analytical
argument (see appendix A).

3.2 Both Unimodal and Bimodal Synapse Distributions Are Stable.
Under random spike arrival with a rate of 10 Hz at all 100 synapses, synaptic
weights show little variability with a typical EPSP amplitude in the range of
0.4 mV. This unspecific pattern of synapses stays stable even if 20 out of the
100 synapses are subject to a common rate modulation between 1 and 30 Hz
(see Figure 4a). However, if modulation of presynaptic firing rates becomes
strong, the synapses rapidly develop a specific pattern with large values of
weights at synapses with rate-modulated spike input and weak weights at
those synapses that received input at fixed rates (synaptic specialization; see
Figures 4a and 4b), making the neuron highly selective to input at one group
of synapses (input selectivity). Thus, our synaptic update rule is capable of
selecting strong features in the input, but also allows a stable, unspecific
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pattern of synapses in case of weak input. This is in contrast to most other
Hebbian learning rules, where unspecific patterns of synapses are unstable,
so that synaptic weights move spontaneously toward their upper or lower
bounds (Miller et al., 1989; Miller & MacKay, 1994; Gerstner, Kempter, van
Hemmen, & Wagner, 1996; Kempter, Gerstner, & van Hemmen, 1999; Song,
Miller, & Abbott, 2000).

After induction of synaptic specialization by strong modulation of presy-
naptic input, we reduced the rate modulation back to the value that pre-
viously led to an unspecific pattern of synapses. We found that the strong
synapses remained strong and weak synapses remained weak; synaptic

Figure 4: Potentiation and depression depend on the presynaptic firing rate.
Twenty synapses of group 1 receive input with common rate modulation, while
the 80 synapses of group 2 (synapse index 21–100) receive Poisson input at a
constant rate of 10 Hz. The spike arrival rate in group 1 switches stochastically
every 200 ms between a low rate νl = 1 Hz and a high rate νh taken as a
parameter. (a) Evolution of synaptic weights as a function of time for different
amplitudes of rate modulation, that is, νh changes from 10 Hz during the first
hour to 30 Hz, then to 50 Hz, 30 Hz, and back to 10 Hz. During the first 2 hours of
stimulation, an unspecific distribution of synapses remains stable even though
a slight decrease of weights in group 2 can be observed when the stimulus
switches to νh = 30 Hz. A specialization of the synaptic pattern with large
weights for synapses in group 1 is induced during the third hour of stimulation
and remains stable thereafter. (b) Top: Mean synaptic weights (same data as in a)
of group 1 (w̄1, blue line) and group 2 (w̄2, green line). Bottom: The stimulation
paradigm νh as a function of time. Note that at νh = 30 Hz (second and fourth
hour of stimulation), both an unspecific pattern of synapses with little difference
between w̄1 and w̄2 (second hour, top) and a highly specialized pattern (fourth
hour, top, large difference between solid and dashed lines) are possible. (c) The
value of the objective functionL (average value per second of time) in color code
as a function of the mean synaptic weight in group 1 (y-axis, w̄1) and group 2
(x-axis, w̄2) during stimulation with νh = 30 Hz. Two maxima can be perceived:
a broad maximum for the unspecific synapse pattern (w̄2 ≈ w̄1 ≈ 0.4 mV) and
a pronounced elongated maximum for the specialized synapses pattern (w̄2 ≈
0; w̄1 ≈ 0.8 mV). The dashed line indicates a one-dimensional section (see d)
through the two-dimensional surface. (d) Objective function L as a function of
the difference w̄2 − w̄1 between the mean synaptic weights in groups 2 and 1
along the line indicated in c. For νh = 30 Hz (dashed, same data as in c) two
maxima are visible: a broad maximum at w̄2 − w̄1 ≈ 0 and a narrow but higher
maximum corresponding to the specialized synapse pattern to the very left
of the graph. For νh = 50 Hz (dotted line), the broad maximum at w̄2 − w̄1 ≈
0 disappears, and only the specialized synapse pattern remains, whereas for
νh = 10 Hz (solid line), the broad maximum of the unspecific synapse pattern
dominates.
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specialization was stable against a change in the input (see Figure 4b). This
result shows that synaptic dynamics exhibits hysteresis, which is an indica-
tion of bistability: for the same input, both an unspecific pattern of synapses
and synaptic specialization are stable solutions of synaptic plasticity under
our learning rule. Indeed under rate modulation between 1 and 30 Hz for
20 out of the 100 synapses, the objective function L shows two local maxima
(see Figure 4c): a sharp maximum corresponding to synaptic specialization
(mean EPSP amplitude about 0.8 mV for synapses receiving rate-modulated
input and less than 0.1 mV for synapses receiving constant input) and a
broader but slightly lower maximum where both groups of synapses have
a mean EPSP amplitude in the range of 0.3 to 0.5 mV (see appendix B for
details on the method). In additional simulations, we confirmed that both
the unspecific pattern of synapses and the selective pattern representing
synaptic specialization remained stable over several hours of continued
stimulation with rate-modulated input (data not shown). Bistability of se-
lective and unspecific synapse patterns was consistently observed for rates
modulated between 1 and 10 Hz or between 1 and 30 Hz, but the unspecific
synapse pattern was unstable if the rate was modulated between 1 and
50 Hz consistent with the weight dependence of our objective function L
(see Figure 4d).
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3.3 Retention of Synaptic Memories. In order to study synaptic mem-
ory retention with our learning rule, we induced synaptic specialization
by stimulating 20 out of the 100 synapses by correlated spike input (spike-
spike correlation index c = 0.2; see section 2.4 for details). The remaining
80 synapses received uncorrelated Poisson spike input. The mean firing rate
(10 Hz) was identical at all synapses. After 60 minutes of correlated input
at the group of 20 synapses, the stimulus was switched to uncorrelated
spike input at the same rate. We studied how well synaptic specializa-
tion was maintained as a function of time after induction (see Figures 5a
and 5b).

Synaptic specialization was defined by a bimodality index that compared
the distribution of EPSP amplitudes at synapses that received correlated
input with those receiving uncorrelated input. For each of the two groups
of synapses, we calculated the mean w̄ = 〈w〉 and the variance σ 2 = 〈[w j −
w̄]2〉: w̄A and σ 2

A for the group of synapses receiving correlated input and w̄B
and σ 2

B for those receiving uncorrelated input. We then approximated the
two distributions by gaussian functions. The bimodality index depends on
the overlap between the two gaussians and is given by b = 0.5 [erf( w̄A−ŝ√

2σA
) +

erf( ŝ−w̄B√
2σB

)], where erf(x) = 2√
π

∫ x
0 exp(−t2)dt is the error function and ŝ is

one of the two crossing points of the two gaussians such that w̄B < ŝ < w̄A.
The two distributions (strong and weak synapses) started to separate

within the first 5 minutes and remained well separated even after the corre-
lated memory-inducing stimulus was replaced by a random stimulus (see
Figure 5b).

In order to study how synaptic memory retention depended on the in-
duction paradigm, the experiment was repeated with different values of the
correlation index c that characterizes the spike-spike correlations during
the induction period. For correlations c < 0.1, the two synaptic distribu-
tions are not well separated at the end of the induction period (bimodality
index <0.9), but they are well separated for c ≥ 0.15 (see Figure 5c). Good
separation at the end of the induction period alone is, however, not suf-
ficient to guarantee retention of synaptic memory, since for the synaptic
distribution induced by stimulation with c = 0.15, specialization breaks
down at t = 80 min., that is, after only 20 minutes of memory retention (see
Figure 5d). On the other hand, for c = 0.2 and larger, synaptic memory is
retained over several hours (only the first hour is plotted in Figure 5d).

The long duration of synaptic memory in our model can be explained
by the reduced adaptation speed of synapses with weights close to zero
(postulate C2). If weak synapses change only slowly because of reduced
adaptation speed, strong synapses must stay strong because of homeo-
static processes that keep the mean activity of the postsynaptic neuron
close to a target value. Moreover, the terms in the online learning rule de-
rived from information maximization favor the bimodal distribution. Re-
duced adaptation speed of weak synapses could be caused by a cascade of
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Figure 5: Synaptic memory induced by input with spike-spike correlations.
(a) Evolution of 100 synaptic weights (vertical axis) as a function of time. Dur-
ing the first 60 minutes, synapses of group A ( j = 1, . . . , 20) receive a Poisson
stimulation of 10 Hz with correlated spike input (c = 0.2), and those of group
B ( j = 21, . . . , 100) receive uncorrelated spike input at 10 Hz. (b) Distribution
of the EPSP amplitudes across the 100 synapses after t = 5 min (dotted line),
t = 60 min (solid line) and t = 120 min (dot-dashed line). The red lines denote
group A while the blue ones group B. (c) Mean EPSP amplitude of group A
(solid red line) and B (dashed blue line) at t = 60 min for different values of
correlation c of the input applied to group A. (d) Bimodality index b of the two
groups of weights as a function of time. The memory induction by correlated
spike input to group B stops at t = 60 min. Memory retention is studied during
the following 60 minutes. A bimodality index close to one implies, as for the
case with c = 0.2, that synaptic memory is well retained.

intracellular biochemical processing stages with different time constants,
as suggested by Fusi, Drew, & Abbott (2005). Thus our synaptic update
rule allows for retention of synaptic memories over timescales that are
significantly longer than the memory induction time, as necessary for
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any memory system. Nevertheless, synaptic memory in our model will
eventually decay if random firing of pre- and postsynaptic neurons per-
sists, in agreement with experimental results (Abraham, Logan, Green-
wood, & Dragunow, 2002; Zhou, Tao, & Poo, 2003). We note that in the
absence of presynaptic activity, the weights remain unchanged, since the
decay of synaptic weights is conditioned on presynaptic spike arrival (see
equation 2.20).

3.4 Receptive Field Development. Synaptic plasticity is thought to be
involved not only in memory (Hebb, 1949), but also in the development of
cortical circuits (Hubel & Wiesel, 1962; Katz & Shatz, 1996; von der Mals-
burg, 1973; Bienenstock et al., 1982; Miller et al., 1989) and, possibly, cortical
reorganization (Merzenich, Nelson, Stryker, Cynader, Schoppmann, & Zook
1984; Buonomano & Merzenich, 1998). To study how our synaptic update
rule would behave during development, we used a standard paradigm of
input selectivity (Yeung, Shouval, Blais, & Cooper, 2004), which is consid-
ered to be a simplified scenario of receptive field development. Our model
neuron was stimulated by a gaussian firing rate profile spanned across the
100 input synapses (see Figure 6a). The center of the gaussian was shifted
every 200 ms to an arbitrarily chosen presynaptic neuron. In order to avoid
border effects, neuron number 100 was considered a neighbor of neuron
number 1, that is, we can visualize the presynaptic neurons as being lo-
cated on a ring.

Nine postsynaptic neurons with slightly different initial values of synap-
tic weights received identical input from the same set of 100 presynaptic
neurons. During 1 hour of stimulus presentation, six of the nine neurons
developed synaptic specialization, leading to input selectivity. The opti-
mal stimulus for these six neurons varies (see Figures 6b and 6c), so that
any gaussian stimulus at an arbitrary location excites at least one of the
postsynaptic neurons. In other words, the six postsynaptic neurons have
developed input selectivity with different but partially overlapping recep-
tive fields. The distribution of synaptic weights for the selective neurons is
bimodal with a first peak for very weak synapses (EPSP amplitudes less
than 0.1 mV) and a second peak around EPSP amplitudes of 0.6 mV (see
Figure 6d); the amplitude distribution of the unselective neurons is broader,
with a single peak at around 0.4 mV.

The number of postsynaptic neurons showing synaptic specialization
depends on the total stimulation time and the strength of the stimulus. If
the stimulation time is extended to 3 hours instead of 1 hour, all postsynaptic
neurons become selective using the same stimulation parameters as before.
However, if the maximal presynaptic firing rate at the center of the gaus-
sian is reduced to 40 Hz instead of 50 Hz, only six of nine are selective after
3 hours of stimulation, and with a further reduction of the maximal rate to
30 Hz, only a single neuron is selective after 3 hours of stimulation (data not
shown). We hypothesize that the coexistence of unselective and selective
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Figure 6: The synaptic update rule leads to input selectivity of the postsynap-
tic neuron. (a) gaussian firing rate profile across the 100 presynaptic neurons.
The center of the gaussian is shifted randomly every 200 ms. Presynaptic neu-
rons fire stochastically and send their spikes to nine postsynaptic neurons.
(b) Evolution of synaptic weights of the nine postsynaptic neurons. Some neu-
rons become specialized for a certain input pattern at the early phase of learning,
others become specialized later, and the last three neurons have not yet become
specialized. Since the input spike trains are identical for all the nine neurons,
the specialization is due to noise in the spike generator of the postsynaptic neu-
rons. (c) Final synaptic weight values of the nine output neurons after 1 hour
of stimulus presentation. (d) The distribution of EPSP amplitudes after 1 hour
of stimulation for (top) the specialized output neurons 1, 2, . . . , 6; (middle) for
nonspecialized neurons 7, 8, 9; (bottom) for all nine output neurons.

neurons during development could explain the broad distribution of EPSP
amplitudes seen in some experiments (e.g., Sjöström et al., 2001, in rat vi-
sual cortex). For example, if we sample the synaptic distribution across all
nine postsynaptic cells, we find the distribution shown at the bottom of
Figure 6d. If the number of unspecific neurons were higher, the relative im-
portance of synapses with EPSP amplitudes of less than 0.1 mV would
diminish. If the number of specialized neurons increased, the distribu-
tion would turn into a clear-cut bimodal one, which would be akin to
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sampling an ensemble of two-state synapses with all-or-none potentiation
on a synapse-by-synapse basis (Petersen, Malenka, Nicoll, & Hopfield, 1998,
in rat hippocampus).

4 Discussion

4.1 What Can We and What Can We Not Expect from Optimality
Models? Optimality models can be used to clarify concepts, but they are
unable to make specific predictions about molecular implementations. In
fact, the synaptic update rule derived in this article shares functional fea-
tures with STDP and classical long-term potentiation (LTP), but it is blind
with respect to interesting questions such as the role of NMDA, Kainate,
endocannabinoid, or CaMKII in the induction and maintenance of potenti-
ation and depression (Bliss & Collingridge, 1993; Bortolotto, Lauri, Isaac, &
Collingridge, 2003; Frey & Morris, 1997; Lisman, 2003; Malenka & Nicoll,
1993; Sjöström, Turrigiano, & Nelson, 2004). If molecular mechanisms are
the focus of interest, detailed mechanistic models of synaptic plasticity
(Senn, Tsodyks, & Markram, 2001; Yeung et al., 2004) should be preferred.
On the other hand, the mere fact that similar forms of LTP or LTD seem to be
implemented across various neural systems by different molecular mecha-
nisms leads us to speculate that common functional roles of synapses are
potentially more important for understanding synaptic dynamics than the
specific way that these functions are implemented.

Ideally, optimality approaches such as the one developed in this article
should be helpful to put seemingly diverse experimental or theoretical
results into a coherent framework. We have listed in section 1 a couple
of points, partially linked to experimental results and partially linked to
earlier theoretical investigations. Our aim has been to connect these points
and trace them back to a small number of basic principles. Let us return
to our initial list and discuss the points in the light of the results of the
preceding section.

4.2 Correlations. Hebb (1949) postulated an increase in synaptic cou-
pling in case of repeated coactivation of pre- and postsynaptic neurons as
a useful concept for memory storage in recurrent networks. In our opti-
mality framework defined by equation 2.3, correlation-dependent learning
is not imposed explicitly but arises from the maximization of information
transmission between pre- and postsynaptic neurons. Indeed, information
transmission is possible only if there are correlations between pre- and
postsynaptic neurons. Information transmission is maximized if these cor-
relations are increased. Gradient ascent of the information term hence leads
to a synaptic update rule that is sensitive to correlations between pre- and
postsynaptic neurons (see equation 2.20). An increase of synaptic weights
enhances these correlations and maximizes information transmission. We
emphasize that in contrast to Hebb (1949), we do not invoke memory
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formation and recall as a reason for correlation dependence, but informa-
tion transmission. Similar to other learning rules (Linsker, 1986; Oja, 1982),
the sensitivity of our update rule to correlations between pre- and postsy-
naptic neurons gives the synaptic dynamics a sensitivity to correlations in
the input as demonstrated in Figures 4 to 6.

4.3 Input Selectivity. During cortical development, cortical neurons de-
velop input selectivity typically quantified as the width of receptive fields
(Hubel & Wiesel, 1962). As illustrated in the scenario of Figure 6, our synap-
tic update rule shows input selectivity and hence stands in the research
tradition of many other studies (von der Malsburg, 1973; Bienenstock et al.,
1982; Miller et al., 1989). Input selectivity in our model arises through the
combination of the correlation sensitivity of synapses discussed above with
the homeostatic term D in equation 2.3 (Toyoizumi et al., 2005a). Since the
homeostatic term keeps the mean rate of the postsynaptic neuron close to
a target rate, it leads effectively to a normalization of the total synaptic in-
put similar to the sliding threshold mechanism in the Bienenstock-Cooper-
Munro rule (Bienenstock et al., 1982). Normalization of the total synaptic
input through firing rate stabilization has also been seen in previous STDP
models (Song et al., 2000; Kempter et al., 1999; Kempter, Gerstner, & van
Hemmen, 2001). Its effect is similar to explicit normalization of synaptic
weights, a well-known mechanism to induce input selectivity (von der
Malsburg, 1973; Miller & MacKay, 1994), but our model does not need
an explicit normalization step. So far we have studied only a single or a
small number of independent postsynaptic neurons, but we expect that as
in many other studies (e.g., Erwin, Obermayer, & Schulten, 1995; Song &
Abbott, 2001; Cooper et al., 2004), our synaptic update rule would yield
feature maps if applied to a network of many weakly interacting cortical
neurons.

4.4 Unimodal versus Bimodal Synapse Distributions. In several previ-
ous models of rate-based or spike-timing-based synaptic dynamics, synap-
tic weights evolved always toward a bimodal distribution, with some
synapses close to zero and others close to maximal weight (Miller et al.,
1989; Miller & MacKay, 1994; Kempter et al., 1999; Song & Abbott, 2001;
Toyoizumi et al., 2005a). Thus, synapses specialize on certain features of the
input, even if the input has weak or no correlation at all, which seems ques-
tionable from a functional point of view and disagrees with experimentally
found distributions of EPSP amplitudes in rat visual cortex (Sjöström et al.,
2001). As shown in Figures 4 to 6, an unspecific pattern of synapses with
a broad distribution of EPSP amplitudes is stable with our synaptic up-
date rule if correlations in the input are weak. Synaptic specialization (bi-
modal distribution) develops only if synaptic inputs show a high degree
of correlations on the level of spikes or firing rates. Thus, neurons special-
ize only on highly significant input features, not in response to noise. A
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similar behavior was noted in two recent models on spike-timing-
dependent plasticity (Gütig, Aharonov, Rotter, & Sompolinsky, 2003; Yeung
et al., 2004). Going beyond those studies, we also demonstrated stability of
the specialized synapse distribution over some time, even if the amount of
correlation through rate modulation is reduced after induction of synaptic
specialization stimulation (see Figure 4). Thus, for the same input charac-
teristics, our model can show unimodal or bimodal distribution of synaptic
weight, depending on the stimulation history. Moreover, we note that in
the state of bimodal distribution, the EPSP amplitudes at the depressed
synapses are so small that in an experimental setting, they could easily
remain undetected or classified as a “silent” synapse (Kullmann, 2003).
A large proportion of silent synapses has been previously shown to be
consistent with optimal memory storage (Brunel, Hakim, Isope, Nadal, &
Barbour, 2004). Furthermore, our results show that in a given population
of cells, neurons with specialized synapses can coexist with others that
have a broad and unspecific synapse distribution. We speculate that these
nonspecialized neurons could then be recruited later for new stimuli, as
hypothesized in earlier models of neural networks (Grossberg, 1987). In
passing, we note that in models of synaptic plasticity with multiplicative
weight dependence, the distribution of weights is always unimodal (Rubin,
Lee, & Sompolinsky, 2001; van Rossum, Bi, & Turrigiano, 2000), but in this
case, retention of synaptic memories is difficult.

4.5 Synaptic Memory. In the absence of presynaptic input, synapses
in our model do not change significantly. Furthermore, our results show
that even in the presence of random pre- and postsynaptic firing activity,
synaptic memories can be retained over several hours, although a slow
decay occurs. Essential for long-term memory maintenance under random
spike arrival is the reduced adaptation speed for small values of synaptic
weights as formulated in postulate C2. This postulate is similar in spirit to a
recent theory of Fusi et al. (2005), with two important differences. First, we
work with a continuum of synaptic states (characterized by the value of w),
whereas Fusi et al. assume a cascade of a finite number of discrete internal
synaptic states where transitions are unidirectional and characterized by
different time constants. The scheme of Fusi et al. guarantees slow (i.e.,
not exponential) decay of memories, whereas in our case, decay is always
exponential even if the time constant is weight dependent. Second, Fusi
et al. use a range of different time constants for both the potentiated and the
unpotentiated state, whereas in our model, it is sufficient to have a slower
time constant for the unpotentiated state only. If the change of unpotentiated
synapses is slow compared to homeostatic regulation of the mean firing rate,
then the maintenance of the strong synapses is given by homeostasis (and
also supported by information maximization).

The fact that our model has been formulated in terms of a continuum of
synaptic weights was for convenience only. Alternatively it is conceivable
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to define a number of internal synaptic states that give rise to binary, or a
small number of, synaptic weight values (Fusi, 2002; Fusi et al., 2005; Abar-
banel, Talathi, Gibb, & Rabinovich, 2005). The actual number of synaptic
states is unknown with conflicting evidence (Petersen et al., 1998; Lisman,
2003).

4.6 Rate Dependence. Our results show that common rate modulation
in one group of synapses strengthens these synapses if the modulation
amplitude is strong enough. In contrast, an increase of rates to a fixed value
of 40 Hz (without modulation) in one group of synapses while another
group of synapses receives background firing at 10 Hz does not lead to a
synaptic specialization, only to a minor readjustment of weights (data not
shown). For a comparison with experimental results, it is important to note
that rate dependence is typically measured with extracellular stimulation of
presynaptic pathways. We assimilate repeated extracelluar stimulation with
a strong and common modulation of spike arrival probability at one group
of synapses (as opposed to an increased rate of a homogeneous Poisson
process). Under this interpretation, our results are qualitatively consistent
with experiments.

4.7 STDP. Our results show that our synaptic update rule shares several
features with STDP as found in experiments (Markram et al., 1997; Bi & Poo,
1998, 2001; Sjöström et al., 2001). The timescale of the potentiation part of
the STDP function depends in our model on the duration of EPSPs. The
timescale of the depression part is determined by the duration of EPSP
suppression in agreement with experiments (Froemke et al., 2005). Our
model shows that the relative importance of LTP and LTD depends on
the initial value of the synaptic weight in a way similar to that found in
experiments (Bi & Poo, 1998). However, for EPSP amplitudes between 0.5
and 2 mV, the LTP part clearly dominates over LTD in our model, which
seems to have less experimental support. Also, the frequency dependence
of STDP in our model is less pronounced than in experiments.

Models of STDP have previously been formulated on a phenomenolog-
ical level (Gerstner et al., 1996; Song et al., 2000; Gerstner & Kistler, 2002)
or on a molecular level (Lisman, 2003; Senn et al., 2001; Yeung et al., 2004).
Only recently have models derived from optimality concepts moved to the
center of interest (Toyoizumi et al., 2005a; Toyoizumi, Pfister, Aihara, &
Gerstner, 2005b; Bohte & Mozer, 2005; Chechik, 2003). There are important
differences of the present model to the existing “optimal” models. Chechik
(2003) used information maximization, but limited his approach to static
input patterns, while we consider arbitrary inputs. Bell and Parra (2005)
minimize output entropy, and Bohte and Mozer (2005) maximize spike
reliability, whereas we maximize the information between full input and
output spike trains. None of these studies considered optimization under
homeostatic and maintenance cost constraints.
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After we introduced the homeostatic constraint in a previous study,
which gave rise to a learning rule with several interesting properties
(Toyoizumi et al., 2005a), we realized that this model did not exhibit prop-
erties of STDP in an in vitro situation without some additional assump-
tions. Indeed, as shown in Figure 3d, the STDP function derived from
information maximization alone exhibits no depression in the absence
of an additional weight-dependent cost term in the optimality function.
The weight-dependent cost term introduced in this letter hence plays a
crucial role in STDP since it shifts the STDP function to more negative
values.

4.8 How Realistic Is a Weight-Dependent Cost Term? The weight-
dependent cost term & in the optimality criterion L depends quadratically
on the value of the weights of all synapses converging onto the same post-
synaptic neuron. This turns out to be equivalent to a “decay” term in the
synaptic update (see the last term on the right-hand side of equation 2.20).
Such decay terms are common in the theoretical literature (Bienenstock
et al., 1982; Oja, 1982), but the question is whether such a decay term (lead-
ing to a slow depression of synapses) is realistic from a biological point of
view.

We emphasize that the decay term in our synaptic update rule is pro-
portional to presynaptic activity. Thus, in contrast to existing models in
the theoretical literature (Bienenstock et al., 1982; Oja, 1982), a synapse
that receives no input is protected against slow decay. The specific form of
the “decay” term considered in this article was such that synaptic weights
decreased with each spike arrival, but presynaptic activity could also be
represented in the decay term by the mean firing rate rather than spike
arrival, with no qualitative changes to the results.

An important aspect of our cost term is that only synapses that have
recently been activated are at risk regarding weight decay. We speculate
that the weight-dependent cost term could, in a loose sense, be related
to the number of plasticity factors that synapses require and compete for
during the first hours of synaptic maintenance (Fonseca et al., 2004). Ac-
cording to the synaptic tagging hypothesis (Frey & Morris, 1997), only
synapses that have been activated in the recent past compete for plasticity
factors, while unpotentiated synapses do not suffer from decay (Fonseca
et al., 2004). We emphasize that such a link of our cost term to the com-
petition for plasticity factors is purely hypothetical. Many relevant details
of tagging and competition for synaptic maintenance are omitted in our
approach.

4.9 Predictions and Experimental Tests. In order to achieve synaptic
memory that is stable over several hours, the reduced adaptation speed for
weak synapses formulated in postulate C2 turns out to be essential. Thus, an
essential assumption of our model is testable: for synapses with extremely
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small EPSP amplitudes, in particular silent synapses, the induction of both
LTP and LTD should require stronger stimulation or stimulation sustained
over longer times, compared to synapses that are of average strength. This
aspect is distinct from models (Gütig et al., 2003) that postulate for weak
synapses a reduced adaptation speed for depression only, but maximal
effect of potentiation. Thus, comparison of LTP induction for silent synapses
(Kullmann, 2003) with that for average synapses should allow differentiat-
ing between the two models. In an alternative formulation, synaptic mem-
ory could also be achieved by making strong synapses resistant to further
changes. As an aside, we note that the model of Fusi et al. (2005) assumes
a reduced speed of transition between several internal synaptic states so
that transition would not necessarily be visible as a change in synaptic
weight.

A second test of our model concerns the pattern of synaptic weights
converging on the same postsynaptic neuron. Our results suggest that early
in development, most neurons would show an unspecific synapse pattern,
that is, a distribution of EPSP amplitudes with a single but broad peak,
whereas later, a sizable fraction of neurons would show a pattern of synaptic
specialization with some strong synapses and many silent ones, that is, a
bimodal distribution of EPSP amplitudes. Ideally the effect would be seen
by scanning all the synapses of individual postsynaptic neurons; it remains
to be seen if modern imaging and staining methods will allow doing this.
Alternatively, by electrophysiological methods, distributions of synaptic
strengths could be built up by averaging over many synapses on different
neurons (Sjöström et al., 2001). In this case, our model would predict that
during development, the histogram of EPSP amplitudes would change in
two ways (see Figure 6d): (1) the number of silent synapses increases so
that the amplitude of the sharp peak at small EPSP amplitude grows, and
(2) the location of the second, broader peak shifts to larger values of the
EPSP amplitudes. Furthermore, and in contrast to other models where the
unimodal distribution is unstable, the transition to a bimodal distribution
depends in our model on the stimulation paradigm.

4.10 Limitations and Extensions. We emphasize that properties of our
synaptic update rules have so far been tested only for single neurons in
an unsupervised learning paradigm. Extensions are possible in several di-
rections. First, instead of single neurons, a large, recurrent network could
be considered. This could, on one side, further our understanding of the
model properties in the context of cortical map development (Erwin et al.,
1995), and on the other side, scrutinize the properties of the synaptic update
rule as a functional memory in recurrent networks (Amit & Fusi, 1994). Sec-
ond, instead of unsupervised learning where the synaptic update rule treats
all stimuli alike whether they are behaviorally relevant or not, a reward-
based learning scheme could be considered (Dayan & Abbott, 2001; Seung,
2003; Pfister et al., 2006). Behaviorally relevant situations can be taken into
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account by optimizing reward instead of information transmission (Schultz,
Dayan, & Montague, 1997).

Appendix A: Determination of the Parameter λ

The parameter λ is set to give $w j = 0 for large enough |t pre − t post| in a
simulated STDP in vitro paradigm. In order to find the appropriate value
of λ, we separately consider the effects of a presynaptic spike and a post-
synaptic one, which is possible since they are assumed to occur at a large
temporal distance. Since a postsynaptic spike alone does not change synap-
tic strength (C j (t) = 0, always), we choose a λ that gives no synaptic change
when a presynaptic spike alone is induced. For a given presynaptic spike
at t f

j , we have

C j (t) = −g
∫ t

0
ε
(
t′ − t f

j
)
e−(t−t′)/τm dt′

= −g
τCτm

τC − τm

[
e−(t−t f

j )/τC − e−
(

t−t f
j

)
/τm

]
. (A.1)

Since ρ̃ ≈ ρr , and ρ̄ ≈ ρr in this in vitro setting, the factor B post in equation
2.14 is approximated as

B post(t) ≈ −w j ge−
(

t−t f
j

)
/τm . (A.2)

Hence, we find the effect of a presynaptic spike as

$w =
∫ T

0

dw j

dt
dt = w j g2 τCτm

τC − τm

[
τCτm

τC + τm
− τm

2

]
− λw j . (A.3)

The condition of no synaptic change gives λ = g2 τmτC
τC −τm

(
τmτC

τm+τC
− τm

2

)
. We

used this λ in the numerical code.

Appendix B: Weight-Dependent Evaluation of the Optimality
Criterion

In Figures 4c and 4d the optimality criterion has been evaluated as a func-
tion of some artifical weight distribution. Specifically, values of synaptic
weights have been chosen stochastically from two gaussian distributions
with mean w̄1 and standard deviation σ1 for group 1 and w̄2 and σ2 for
group 2. In order to account for differences in standard deviations due to the
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weight-dependent update rate α(w), we chose σ (w̄) = 0.1 mV ·w̄4/(w4
s +

w̄4), which gives a variance of synaptic weights in both groups, which is
consistent with the variance seen in Figure 4A.

For a fixed set of synaptic weight values, the network is simulated during
a trial time of 30 minutes, while the synaptic updated rule has been turned
off and the objective function L defined in equation 2.3 is evaluated using
ρ̄est from equation 2.21. The result is divided by the trial time t and plotted in
Figures 4c and 4d in units of s−1. The mesh size of mean synaptic strength is
0.04 mV. The one-dimensional plot in Figure 4d is taken along the direction
w̄2 = 0.8 mV −w̄1.
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