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Abstract—The geometric interpretation of sphere covering
describing the rate distortion problem of a Gaussian source
with the squared-error distortion measure is generalized to a
Laplacian source and the `1-distortion measure. Using additional
constraints on the distortion measure, sphere covering is further
generalized to exponential sources and to Poisson point processes.

I. INTRODUCTION

It is well-known that the rate-distortion problem of a Gaus-
sian source and a squared-error distortion measure can be
understood geometrically by counting the minimum number of
small distortion balls required to completely cover the volume
of the ball describing the possible outputs of the Gaussian
source [1, Sec. 10.9], [2, Sec. 10.5]. This beautiful picture
of sphere covering,1 however, is not restricted to the special
case of Gaussian sources with an `2-distortion measure, but
can be generalized to sources and corresponding distortion
measures in the general `p-space. In this paper, we focus
on the case for p = 1, i.e., a Laplacian source with the
`1-distortion measure, and then show how it can be adapted
to find a corresponding geometric interpretation of the well-
known rate-distortion function of a Poisson point process. The
general case in `p is deferred to a later publication.

The remainder of this paper is structured as follows. After
some definitions and comments about notation in Section II,
we briefly recall the well-known sphere covering interpretation
for the Gaussian source in Section III. In Section IV we
then develop sphere covering in `1 for a Laplacian source.
Section V adapts the results from Section IV to allow the
description of an exponential source (and a constrained dis-
tortion measure), and Section VI finally looks at the Poisson
point processes. We focus on geometric proofs for the converse
part of the rate-distortion problem and omit the achievability
proofs.

II. NOTATION

The `np -ball in Rn around the center x̂ ∈ Rn of radius r > 0
is given as

Bnp (r, x̂) ,

x ∈ Rn :

(
n∑
i=1

|xi − x̂i|p
)1/p

≤ r

, (1)

1A similar geometric interpretation exists for the channel coding problem
leading to sphere packing [3, Sec. 17.3], [2, Ch. 9].

and its surface, the `np -sphere in Rn, is

Sn−1p (r, x̂) ,

x ∈ Rn :

(
n∑
i=1

|xi − x̂i|p
)1/p

= r

. (2)

For the n-simplex in Rn around the center x̂ ∈ Rn we write

4n−1(r, x̂) ,

{
x ∈ Rn :

n∑
i=1

(xi − x̂i) = r,

xi − x̂i > 0, ∀i ∈ {1, . . . , n}
}
. (3)

Sometimes we omit the second argument in the sets given in
(1)–(3), in which case it is understood that a vector 0 should
be substituted, i.e., Bnp (r) , Bnp (r,0), Sn−1p (r) , Sn−1p (r,0),
and 4n−1(r) , 4n−1(r,0).

We use voln to denote the n-dimensional Lebesgue mea-
sure. Bold font denotes vectors (e.g., x and 0), and sets are
in a calligraphic font B. The logarithm log(·) is to base 2.

III. RATE DISTORTION AND SPHERE COVERING IN `2

We recall the familiar geometric picture for the Gaussian-
quadratic rate-distortion problem based on sphere covering.
For a Gaussian source of variance σ2 and mean 0, the rate-
distortion code with distortion D yields a minimal rate given
by taking the volume ratio of the source ball Bn2

(√
nσ2

)
and

the distortion ball Bn2
(√
nD
)

in Rn, i.e.,

RGaussian(D) = lim
n→∞

1

n
log

voln

(
Bn2
(√
nσ2

))
voln

(
Bn2
(√
nD
)) . (4)

Note that the length-n codewords that achieve (4) are the
coordinates of the centers of the distortion balls. While we
know that optimal codewords can be generated IID according
to a Gaussian distribution of variance σ2 − D and mean
0, this fact cannot be deduced from the sphere-covering
argument easily if we follow the geometric picture as given in
Fig. 1(a), where the n-dimensional distortion balls cover the
n-dimensional source ball.

To infer the generation of rate-distortion codewords, we
need an alternative geometric picture, as already explored
in [4, Sec. I], which we depict in Fig. 1(b): Here we note
that the source sequences generated by the Gaussian source
actually lie within a thin layer close to the surface of the
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source ball almost surely. Therefore, we aim to enclose2 the
surface of the source ball entirely with a minimal number
of distortion balls, i.e., cover the surface Sn−12

(√
nσ2

)
with

the cross sections Sn−12

(√
nσ2

)
∩ Bn2

(√
nD, x̂m

)
, where the

codewords x̂m are selected such that each cross section is
maximized. From Fig. 1(b), one immediately sees that all x̂m
lie on the surface of an `n2 -ball:

x̂m ∈ argmax
x̂∈Rn

voln−1
(
Sn−12

(√
nσ2

)
∩ Bn2

(√
nD, x̂

))
(5)

= Sn−12

(√
n(σ2 −D)

)
. (6)

(a) (b)

Figure 1. Geometric picture of `2 sphere covering: on the left all distortion
balls cover the source ball, while on the right only the surface of the source
ball is covered.

To this point, one may conjecture that the relationship
between rate distortion and sphere covering exists beyond
the well-known case for the Gaussian source in the `2-space
presented in this section. In the following sections we present
our results for an analogous case of sphere covering with `n1 -
balls in Rn, define its corresponding rate-distortion problem,
extend it to an exponential source, and finally link it to known
rate-distortion functions for the Poisson process.

IV. RATE DISTORTION AND SPHERE COVERING IN `1

A. The Laplacian-`1 Rate-Distortion Problem

To generalize the ideas of Section III to the `1-space we
consider the Laplacian source

X ∼ PX(x) ,
1

2r0
e−|x|/r0 (7)

and choose the `1-distortion measure

d(x, x̂) , |x− x̂|. (8)

Then, by recalling the standard definition

d(x, x̂) ,
1

n

n∑
i=1

d(xi, x̂i) =
1

n

n∑
i=1

|xi − x̂i|, (9)

2The phrase “enclose a surface” is used when we refer to covering an
arbitrarily small inflation of this (n − 1)-dimensional surface in Rn for n
sufficiently large.

one immediately realizes that the distortion ball3 centered at
x̂ is by definition an `n1 -ball, i.e.,{

x ∈ Rn : d(x, x̂) ≤ D
}

= Bn1 (nD, x̂). (10)

In a naive approach we can now argue that, for large n, the
source sequence X will lie with high probability within the `n1 -
ball of radius nr0, Bn1 (nr0). Thus, by computing the ratio of
the volume of the large radius-(nr0) ball to the volume of the
small radius-(nD) balls, we can easily deduce the minimum
number of codewords needed to cover the complete source
ball:

|Cn| ≥ voln
(
Bn1 (nr0)

)
voln

(
Bn1 (nD)

) =
(r0
D

)n
(11)

(see Fig. 2(a)). From this, the rate-distortion function (or rather
a lower bound to it) can be derived using that the rate is defined
as

R =
1

n
log |Cn|. (12)

x1

x2

Bn
1 (nD)

Bn
1 (nr0)

x1

x2

Bn
1 (nD)

Bn
1 (nr0)

(a) (b)

Figure 2. Geometric picture of `1 sphere covering, analogous to the `2 sphere
covering shown in Fig. 1.

We would like to present a more accurate geometric picture
by observing that the source sequences generated by PX lie
within a thin layer at the surface of the source ball Bn1 (nr0)
almost surely, since 1

n

∑n
i=1 |xi| → r0 with probability 1 as

n→∞ [5, Sec. II].
Thus, reminiscent of Section III, we aim to enclose the

surface of the source ball with a minimal number of distortion
balls, i.e., we intersect the source `1-sphere with many small
distortion balls, creating tiles that cover the complete surface
of the source ball, see Fig. 2(b).

Theorem 1: For a Laplacian source (7) and an `1-distortion
measure (8), define D , limn→∞ E

[
d(X, X̂)

]
. Then the rate-

distortion function is lower-bounded as

RLaplacian(D) ≥
{

log
(
r0
D

)
if 0 < D ≤ r0,

0 otherwise.
(13)

Proof: This theorem follows from Theorem 3 below.

3Note that we follow common practice and talk about `n1 -balls and `n1 -
spheres, even though the corresponding shape does not look like a traditional
ball at all, but rather is a higher-dimensional version of the three-dimensional
regular octahedron. See also Fig. 2.
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B. Sphere Covering with `n1 -Balls in Rn

When investigating ways of how a small `n1 -ball can cover
a large `n1 -sphere (see Fig. 2(b)), we will avoid distinguishing
various different cases of covering facets, edges, or corners,
but rather directly prove that the covered ((n−1)-dimensional)
part of the large `n1 -sphere is upper-bounded by the surface of
the small `n1 -ball.

Proposition 2: For radii rb > rs, and arbitrary z,

voln−1
(
Sn−11 (rb) ∩ Bn1 (rs, z)

)
≤ voln−1

(
Sn−11 (rs, z)

)
. (14)

Proof: See Appendix A.
Theorem 3 (Asymptotic sphere covering in `n1 ): For n ≥ 2,

fix two radii rb > rs > 0 and denote by Cn , {x̂i ∈ Rn} a
collection of centers of `n1 -balls Bn1 (rs, x̂i). Then for any Cn
such that the union of radius-rs balls around the centers in Cn
do cover the complete surface of the radius-rb ball,

Sn−11 (rb) ⊆
⋃

x̂∈Cn
Bn1 (rs, x̂), (15)

the following inequality holds:

lim
n→∞

1

n
log |Cn| ≥ log

(
rb

rs

)
. (16)

Proof: The minimal size of Cn is achieved when x̂i are se-
lected such that voln−1

(
Sn−11 (rb)∩Bn1 (rs, x̂)

)
is maximized.

From Proposition 2 we know that the latter is upper-bounded
by the boundary measure of the small ball. Thus,

|Cn| ≥ voln−1
(
Sn−11 (rb)

)
maxx̂ voln−1

(
Sn−11 (rb) ∩ Bn1 (rs, x̂)

) (17)

≥ voln−1
(
Sn−11 (rb)

)
voln−1

(
Sn−11 (rs)

) =

(
rb

rs

)n−1
(18)

and hence (16) holds.

V. RATE DISTORTION AND SPHERE COVERING IN `1 WITH
CONSTRAINED `1-DISTORTION MEASURE

In Section IV, we have shown that the Laplacian-`1 rate-
distortion problem turns out to have the geometric picture of
sphere covering in `1, in complete analogy to the association
of the Gaussian-quadratic case to sphere covering in the
`2-space. In this section, we will show that by adding an
additional constraint on the `1-distortion measure to break the
symmetry, we can also use our geometric picture of sphere
covering to explain rate distortion of an exponential source.
The ultimate goal of this description will be the corresponding
rate-distortion problem of a Poisson process, which can be
described by the exponentially distributed inter-arrival times;
see Section VI.

To motivate our choice of the constrained `1-distortion
measure, we make the following preliminary observations:

1) The interval description for point process realizations
with a fixed number of points over duration T forms a
simplex (because the sum of all intervals must equal T ),
and

2) with reflections, this simplex becomes the surface (bound-
ary) of an `n1 -ball.

In view of these two observations, we use as a distortion
measure the common `1-distortion, but with the additional
twist that the distortion is set to infinity if the sequences do not
satisfy some specified condition. The effect of this additional
constraint is to break the symmetry that was introduced in
order to arrive at an `n1 -ball from the implicitly given simplex.

A. The Exponential-`1 Rate-Distortion Problem

Consider the exponential source

X ∼ PX(x) = λ e−λx Θ(x), (19)

where Θ(·) denotes the Heaviside function, and define the
following constrained `1-distortion measure.

Definition 4 (Constrained `1-distortion measure):

d1(x, x̂) ,


1

n

n∑
i=1

|xi − x̂i| if xi − x̂i ≥ 0 for i odd
and xi − x̂i < 0 for i even,

∞ otherwise.
(20)

Remark 5: Choosing alternating signs as the condition under
which the constrained `1-distortion d1(·, ·) is finite rather than,
e.g., requiring the first half to be positive and the second half
negative, makes the condition applicable still as n→∞.

Remark 6: The one-sided distortion measure for an ex-
ponential source proposed by Verdú [6], [7] is similar to
Definition 4, only that the constraint is imposed such that
xi − x̂i ≥ 0 for all i ∈ {1, 2, . . . , n}.

Theorem 7: For an exponential source (19) and the
constrained `1-distortion measure (20), define D ,
limn→∞ E

[
d1(X, X̂)

]
. Then the rate-distortion function is

lower-bounded as

RExponential(D) ≥
{
− log(λD) if 0 < D ≤ 1

λ ,

0 otherwise.
(21)

Proof: This theorem follows from Theorem 11 below.

B. Sphere Covering with Constrained `n1 -Balls in Rn

The exponential source specified by (19) can be viewed
as the Laplacian source in (7) renormalized over the positive
support x ≥ 0. As opposed to lying almost surely on the
surface of an `n1 -ball for the Laplacian source (as n tends to
infinity), the sequences generated by the exponential source
(19) lie instead almost surely on a simplex 4n−1(n/λ) in Rn
as n tends to infinity.

Since we use the constrained `1-distortion measure given
in (20), in the corresponding geometry of the problem, the
distortion ball is also constrained: it is an orthant of the `n1 -
ball Bn1 (rs), i.e., it becomes a (nonregular) n-simplex, called
distortion simplex.

Definition 8: For x̂ ∈ Rn and rs > 0, we define the
distortion simplex Un1 (rs, x̂) as the intersection of Bn1 (rs, x̂)
with n half-spaces as follows:

Un1 (rs, x̂) ,
{
x ∈ Rn : x ∈ Bn1 (rs, x̂), and xi − x̂i ≥ 0 for
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x1

x2

Un
1 (nD, x̂)

x1

x2

x̂

�n�1(n/�)

Un
1 (nD, x̂)

(a) (b)

Figure 3. Geometric picture of sphere covering of the simplex 4n−1(n/λ)
of the exponential source (b) with many small distortion simplices (a).

i odd, xi − x̂i < 0 for i even
}
. (22)

As before, we use the shorthand notation Un1 (rs) , Un1 (rs,0).
Thus, we need to cover the simplex 4n−1(n/λ) of the

exponential source (which is the first orthant of the original
large `n1 -sphere) with many small distortion simplices, see
Fig. 3(b).

We use H to denote any hyperplane of Rn that is parallel
to H0, where H0 is the hyperplane x1 + · · ·+ xn = 0.

Proposition 9 (The maximal hyperplane section of Un1 (1) is
the facet 4n−1(1)): Let K be any hyperplane in Rn. Then

voln−1
(
4n−1(1)

)
= max

K
voln−1

(
K ∩ Un1 (1)

)
. (23)

Proof: See Appendix B.
Corollary 10: Note that since Proposition 9 makes no

assumptions about the hyperplane, it follows directly that also
sections with a parallel hyperplane H cannot be larger than
the facet 4n−1(1), i.e., ∀n ≥ 2,

max
H

voln−1
(
H ∩ Un1 (1)

)
≤ voln−1

(
4n−1(1)

)
. (24)

The following theorem is parallel to Theorem 3.
Theorem 11 (Asymptotic `1-covering of a simplex): For n ≥

2, fix two radii rb > rs > 0 and denote by Cn , {x̂i ∈ Rn} a
collection of centers of distortion simplices Un1 (rs, x̂i). Then
for any Cn such that

4n−1(rb) ⊆
⋃

x̂∈Cn
Un1 (rs, x̂), (25)

the following inequality holds:

lim
n→∞

1

n
log |Cn| ≥ log

(
rb

rs

)
. (26)

Proof: The minimal size of Cn is achieved when x̂i are se-
lected such that voln−1

(
4n−1(rb) ∩ Un1 (rs, x̂)

)
is maximized:

|Cn| ≥ voln−1
(
4n−1(rb)

)
maxx̂ voln−1

(
4n−1(rb) ∩ Un1 (rs, x̂)

) (27)

≥ voln−1
(
4n−1(rb)

)
maxH voln−1

(
H ∩ Un1 (rs,0)

) (28)

≥ voln−1
(
4n−1(rb)

)
voln−1(4n−1(rs))

=

(
rb

rs

)n−1
. (29)

Here, in (28) we replace the large simplex by a hyperplane;
and the inequality in (29) uses (24) in Corollary 10.

VI. RATE DISTORTION AND SPHERE COVERING FOR THE
HOMOGENEOUS POISSON PROCESS

In this section, we will show that the rate-distortion problem
for a homogeneous Poisson process has a geometric picture
that basically coincides with the constrained `1-sphere cover-
ing discussed in Section V. The main idea is to describe the
Poisson point process using the exponentially distributed inter-
point intervals and then rely on the results from Section V.

Define a function f that takes as an input a point process
realization y over the interval [0, T ] and returns a vector
containing the inter-point intervals of y, i.e.,

f(y) = τ , (τ0, τ1, . . . , τm), (30)

where for all k ∈ {1, 2, . . . ,m}, the kth point is at yk =∑k−1
i=0 τi and where

∑m
i=0 τi = T .

Let Y be a Poisson point process Y over the interval
[0, T ] and let y be a realization of Y. Thus, the number of
components of f(Y) is distributed as follows:

Pr
[
|f(Y)| = m

]
=
e−λT (λT )m−1

(m− 1)!
, m ∈ N. (31)

Here we use the shorthand |z| to denote the number of
components of a vector z.

To study the rate-distortion problem for a Poisson process,
we need to define a distortion measure for any two point
processes Y and Ŷ in continuous time over the interval
[0, T ], denoted dT (y, ŷ) for point process realizations y and
ŷ. Using the constrained `1-distortion measure d1(·, ·) in (20),
we choose

dT (y, ŷ) ,

{ |f(y)|
T d1

(
f(y), f(ŷ)

)
if |f(y)| = |f(ŷ)|,

∞ otherwise.
(32)

Define

D̄ , lim
T→∞

E
[
dT (Y, Ŷ)

]
. (33)

Theorem 12 (Poisson-`1 rate-distortion problem): The rate-
distortion function (in bits per unit time) of a Poisson point
process Y with intensity λ under the distortion measure (32)
is lower-bounded as

RPoisson(D̄) ≥
{
−λ log D̄ if 0 < D̄ ≤ 1,

0 otherwise.
(34)

Proof: The proof of Theorem 12 relies4 on Theorem 7.
Let y be a realization of the Poisson point process Y over the
interval [0, T ]. Note that as T tends to infinity, |f(Y)| tends
to λT almost surely. Thus, for |f(Y)| = |f(Ŷ)|, we can write
(32) asymptotically as

lim
T→∞

dT (Y, Ŷ) = λ lim
T→∞

d1
(
f(Y), f(Ŷ)

)
a.s., (35)

and furthermore rewrite (33) as

D̄ = λ lim
T→∞

E
[
d1
(
f(Y), f(Ŷ)

)]
= λD a.s. (36)

4Note that the rate-distortion function in Theorem 7 is in bits per symbol,
while the rate-distortion function in Theorem 12 is in bits per unit time.
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Similarly, we have

RPoisson(D̄) = λRExponential(D̄/λ) (37)

and (34) follows by applying (21) of Theorem 7.
Note that we have derived a lower bound for the Poisson-

`1 rate-distortion function (Theorem 12) as a consequence of
the exponential-`1 rate-distortion problem (Theorem 7). We
observe that the resulting lower bound in (34) turns out to
be the rate-distortion function as when the distortion measure
is the canonical queuing [8] or the point covering distortion
[9], [10]. This is not a mere coincidence, and we will come
back to this in a later publication where we will discuss as to
why these different distortion measures yield the same rate-
distortion functions.

APPENDIX A
PROOF OF PROPOSITION 2

The proof is based on a “successive slicing” argument that
shows that the (n−1)-dimensional volume of the intersection
of the small `n1 -ball with the large sphere is not larger than
the total surface volume of the small ball.

Let K be the smallest set containing open half-spaces Ki
such that ⋂

i

(
Rn \ Ki

)
= Bn1 (rb). (38)

Note that the size of K is finite, namely 2n (because Bn1 (rb)
has 2n facets).

For Bn1 (rs, z) ∩ Sn−11 (rb) = ∅, the claim trivially holds.
Therefore we pick some z such that Bn1 (rs, z)∩Sn−11 (rb) 6= ∅.
Let M , Bn1 (rs, z) be the small `n1 -ball, and define

L ,
{
K ∈ K : K ∩M 6= ∅

}
⊆ K. (39)

We now go through the following algorithm:
1) While L 6= ∅:

a) Choose any L ∈ L.
b) Slice off that part of M that intersects with L:

M←M\ (M∩L). (40)

c) Remove L from L:

L← L \ L. (41)

2) Return M.
Firstly, note that the algorithm will terminate in a finite number
of steps because L contains a finite number of elements.
Secondly, observe that in each iteration, the boundary measure
of M is reduced. Thus, the boundary measure of the initial
M is greater or equal to the boundary (denoted ∂) measure
of the returned M:

voln−1
(
Sn−11 (rs, z)

)
≥ voln−1

(
∂
(
Bn1 (rs, z) ∩ Bn1 (rb)

))
. (42)

And since we also have

voln−1
(
∂
(
Bn1 (rs, z) ∩ Bn1 (rb)

))
≥ voln−1

(
Bn1 (rs, z) ∩ Sn−11 (rb)

)
, (43)

the claim follows.

APPENDIX B
PROOF OF PROPOSITION 9

For a regular simplex, the maximal hyperplane section is
its facet [11, Sec. 5]. In this proposition, Un1 (1) (an irregular
n-simplex) is the convex hull (denoted co(·)) of a regular
(n−1)-simplex with 0, i.e., Un1 (1) = co

(
4n−1(1),0

)
. Denote

the origin of Rn by O, and let P ∈ Rn be the orthogonal
projection of O onto 4n−1(1). Then we define O′ ∈ Rn such
that

ĽPO′ =
√
n+ 1 · ĽPO, (44)

and note that co
(
4n−1(1), O′

)
is a regular n-simplex. We

denote this regular n-simplex by 4nreg. Clearly,

Un1 (1) = co
(
4n−1(1), O

)
(45)

⊂ co
(
4n−1(1), O′

)
(46)

= 4nreg. (47)

Since the maximal hyperplane section of 4nreg is its facet,
4n−1(1) is a maximal section of 4nreg. And because Un1 (1)
is a subset of 4nreg (see (46)), 4n−1(1) is also a maximal
section of Un1 (1), i.e., for any hyperplane K ∈ Rn,

voln−1
(
4n−1(1)

)
= max

K
voln−1

(
K ∩ Un1 (1)

)
. (48)
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