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Bees display the remarkable ability to return home
in a straight line after meandering excursions to
their environment. Neurobiological imaging stud-
ies have revealed that this capability emerges from
a path integration mechanism implemented within
the insect’s brain. In the present work, we emulate
this neural network on the neuromorphic mixed-
signal processor BrainScaleS-2 to guide bees, vir-
tually embodied on a digital co-processor, back to
their home location after randomly exploring their
environment. To realize the underlying neural in-
tegrators, we introduce single-neuron spike-based
short-term memory cells with axo-axonic synapses.
All entities, including environment, sensory organs,
brain, actuators, and the virtual body, run au-
tonomously on a single BrainScaleS-2 microchip.
The functioning network is fine-tuned for better
precision and reliability through an evolution strat-
egy. As BrainScaleS-2 emulates neural processes
1000 times faster than biology, 4800 consecutive
bee journeys distributed over 320 generations oc-
cur within only half an hour on a single neuromor-
phic core.

path integration, navigation, central complex, bee,
short-term memory, BrainScaleS, mixed-signal,
neuromorphic, spiking, neural networks

1 Introduction

Insects are capable of navigating complex real-world envi-
ronments with remarkable efficiency, speed and robustness.
Besides the remarkable adaptation of their bodies for this
task this is due to their neural anatomy which evolved over
a period of at least 520 million years [1]. Being capable of
mastering numerous difficult tasks such as homing [2], mi-
grating over distances of more than 1000 kilometers [3, 4],
remembering and communicating spatial locations [5], or
learning visual cues [6], even large insect brains measure

only a few cubic millimeters in volume and often consist of
less than a million neurons [7, 8].

Within the last decade, research in experimental neuro-
science has brought about a completely new quality in the
measurement of neuronal structures and processes, provid-
ing groundbreaking insights into their working principles.
Advances in biological imaging and data processing re-
sulted in almost complete connectomes of insect brains [9–
12], while methodological combinations of genetic modifi-
cation, bio-imaging, and virtual reality for fixated animals
made it possible to record real-time cell-level neural ac-
tivity of brains engaged in realistic interactions with the
environment [13, 14]. Whereas earlier lesion-based stud-
ies have shown that insect brain structures like the central
complex [15] are somehow involved in orientation and navi-
gation [16], modern calcium-based imaging techniques [17]
provide detailed time-resolved insight. For example, imag-
ing the head-fixed fruit fly Drosophila melanogaster in vivo
in virtual environments has revealed that subcomponents
of the central complex track azimuthal visual cues [18] and
indicate and integrate the fly’s heading direction [19]. Sim-
ilar experiments on the sweat bee Megalopta genalis have
even revealed enough insight to construct a fully func-
tional physiological model for path integration-based nav-
igation [13], deciphering a mechanism that lets the insect
keep track of its home location by integrating over its cur-
rent heading velocities.

While biological experiments continue to unveil intri-
cate physiological details of these tiny nervous systems,
studying such abstract neural network models in simula-
tions can confirm and sharpen our understanding of how
nervous structures correspond to their respective func-
tions [13, 20, 21]. As those functions are often defined
by interactions of the entire animal with its environment,
faithful and valid simulations need to encompass also com-
ponents beyond the neurons. This might include the en-
vironment, the animal’s body, its sensory and motoric or-
gans, or the information de- and encoders translating be-
tween external physics and nervous signals. All those com-
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ponents can be implemented virtually in simulations [22–
25] or physically through robots [26, 27].

Similarly, the dynamics of the attached neural networks
can be solved numerically within simulations [28–31], or
emulated using physical, neuromorphic circuits [32–39].
Those circuits are usually densely integrated on CMOS-
based neuromorphic microchips and mimic the architec-
ture and properties of biological neural networks. Unlike
common central processing units (CPUs), which typically
operate on data within a single large block of memory, neu-
romorphic processors tend to perform many parallel com-
putations using multiple processing units and distributed
memory. While some implementations are based on spe-
cialized digital building blocks [40–45], others recreate the
dynamics of physiological membrane potentials in terms
of analog voltages and currents, thus, emulating physi-
cal models of the biological archetypes [46–52]. Also in
the field of analog neuromorphic engineering, rapid ad-
vances and developments have taken place especially within
the last decade, revealing unprecedented versatility at out-
standing power efficiencies [33, 53–60].

In the present work we merge recent seminal discover-
ies in experimental neuroscience with a number of recent
innovations in neuromorphic engineering into a cohesive
neurorobotic agent. Relying on an accelerated analog neu-
romorphic nervous system, we reproduce the ability of bees
to return to their nest’s location after excursions through a
two-dimensional environment. While previous case studies
have successfully mapped various subcomponents of the
networks used by insects or mammals for path integra-
tion onto neuromorphic substrates [32, 35, 36, 61, 62], we
demonstrate a fully embodied and autonomous neuromor-
phic agent within a single BrainScaleS-2 neuromophic pro-
totype chip [51, 54, 57, 58, 63]. The agent’s body and
the environment are simulated on a digital on-chip copro-
cessor, while the neural network is physically emulated
on the chip’s analog neuromorphic core with sensory in-
puts and motor outputs connecting the two domains via
mixed-signal circuits. Due to the intrinsic time scales of
the analog circuits, the neural dynamics proceed 1000×
faster than in biology. This speed-up is independent of
the network size and allows for rapid prototyping dur-
ing the initial design process, when architectural decisions
are still to be made or when parallelizing stochastic pa-
rameter evaluations is not feasible. The acceleration also
benefits optimization algorithms which improve the net-
work’s performance by successive incremental parameter
updates [33, 51, 53–56, 59, 60]. We demonstrate this by
employing an evolution strategy algorithm for fine-tuning
the agent’s performance through synaptic weight updates.
As an example, spawning 320 successive generations of 15
neuromorphic insects and evaluating the navigation capa-
bilities of each individual during 3.3min flights takes only
around 0.5 h on a single neuromorphic processor without
parallelization. Executed in real time, the flight simula-
tions alone would take more than 11 days.

Rendering the foundational neural network model de-
rived from Megalopta genalis [13] compatible with the neu-
romorphic circuits on BrainScaleS-2 additionally required
some essential adaptations and adjustments. This in-

cluded, most importantly, the transition from abstract, an-
alytical firing rate neurons to spike-based leaky integrate-
and-fire (LIF) neurons. Besides common firing rate models
which map summed input activities through a nonlinear re-
sponse function to an output activity, the original model
crucially relies on heuristically defined equations responsi-
ble for storing and integrating the activities of presynap-
tic neurons. To biologically plausibly implement a func-
tionally identical mechanism based on spiking LIF neu-
rons, we introduce a single-cell short-term memory mech-
anism based on axo-axonic synapses. While the resulting
model has been developed for BrainScaleS-2, it is flexi-
ble enough to be ported to other neuromorphic systems as
well. For example, sub-threshold neuromorphic platforms,
like ROLLS [47] or DYNAPs [48], could adapt the network
to facilitate ultra-low-power robotic control units. Other
applications requiring more robustness and repeatability
could instead make use of digital neuromorphic systems
like SpiNNaker [40, 64], Intel’s Loihi [42, 45] or IBM’s
TrueNorth [41]. Being compatible with a wide range of
spiking neural models, the presented model can also serve
as a building block in larger insect-inspired systems or in
neuro-inspired control units.

2 Results

2.1 BrainScaleS-2

BrainScaleS-2 is a mixed-signal neuromorphic computing
system [51, 63]. The second-generation prototype chip
used in this work contains an analog neuromorphic core
with 32 physical neurons [63] with 32 synapses each.1

The neuron dynamics follow the LIF equation CmV̇m =
−gl(Vm − Vl) + Isyn, where Cm is the membrane capaci-
tance, Vm the dynamic membrane voltage, gl the leak con-
ductance, Vl the static leak or resting potential, and Isyn
the dynamic synaptic input current. Whenever the mem-
brane potential crosses the threshold voltage Vth, it is re-
set to Vreset and the neuron’s spike counter is incremented.
The post-synaptic spike is represented as a digital data
package that carries the unique address of the firing neu-
ron. It is sent off-chip to an field-programmable gate array
(FPGA) responsible for recurrent spike routing (later ver-
sions of the platform include an on-chip routing engine)
and turned into a pre-synaptic spike with a newly assigned
target label.

Pre-synaptic spikes arrive at the mixed-signal synapse
circuits where their target label is compared against the
programmable synaptic label. If the labels match, the cir-
cuit triggers a synaptic event (i.e., a current pulse) with
an amplitude proportional to a 6 bit programmable synap-
tic weight w. The resulting current pulse creates a post-
synaptic potential on the dendritic capacitance which is
finally transferred to the membrane capacitance of the re-
ceiving neuron. Synapses can be either excitatory or in-
hibitory, resulting in a positive or negative postsynaptic
potential, respectively.

1The full-scale BrainScaleS-2 chip has 512 neurons with 256
synapses each.
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Figure 1: BrainScaleS-2 prototype system. A) Entire sys-
tem with FPGA, BrainScaleS-2 chip and periph-
ery. B) BrainScaleS-2 prototype chip of the sec-
ond generation. C) System schematic depict-
ing the FPGA and the chip. Events coming
from the FPGA are distributed to the synapse
rows. The synaptic columns are connected to
the triangular-shaped neurons that send spikes to
the spike counters at the bottom and then back
to the FPGA.

The prototype chip includes an embedded digital proces-
sor clocked at 100MHz2 that can access all on-chip com-
ponents [65]. Its single instruction, multiple data (SIMD)
vector unit can be used to efficiently read and write synap-
tic addresses and weights. Since the processor’s primary
purpose is to compute synaptic weight updates, it is called
the plasticity processing unit (PPU). In this work, we em-
ploy the PPU to simulate the agent and its environment,
to inject spikes into the neural network from virtual spike
sources, to manage the weight dynamics of the integration
mechanism, for experiment control and for recording sim-
ulation states.

2.2 Network model and embodiment

The presented network model is based on Stone et al. [13]
where a biologically plausible mechanism for path integra-
tion in bees is proposed. We refer the reader to the refer-
enced publication for an exposition of the biological back-
ground. This section explains all functional aspects of the
model and describes details about the presented implemen-
tation.

The state of the virtual insect is represented by four
variables: the two-dimensional spatial position (x, y), the
head direction ϕ and the velocity v. Each experiment starts
with a spread-out phase lasting for 50ms (equivalent to
50 s in the biological time frame) in which the agent is
forced on a random walk. This simulates a flight trajectory
that the insect might take on its search for a food source.
During this time, the network receives sensory input from
the head orientation and the optical flow across its eyes,
but is disconnected from the motor units and does, thus,
not control the insect’s motion.

The neuronal representation of head orientation is mod-
eled after the behavior of neurons in the central complex, a
part of the insect brain that is critically involved in naviga-

2On the full-scale BrainScaleS-2 chip, this processor is clocked at
250MHz.
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Figure 2: Network architecture. The black and blue ar-
rows correspond to excitatory and inhibitory
connections, respectively. The columnar
protocerebral bridge/upper division of the central
body, type 1 (CPU1) and columnar protocerebral
bridge/upper division of the central body, type 4
(CPU4) populations are each divided into a left
and right subpopulation, resulting in two logical
hemispheres. The network topology relies on a
physiological model proposed in [13].

tion. In particular, it is known that the tangential proto-
cerebral bridge, type 1 (TB1) group of neurons contained
therein directly encodes the current head orientation like
an internal biological compass. Each TB1 neuron corre-
sponds to a specific absolute direction and its activity is
proportional to the angular proximity of the current head
orientation with respect to this direction [19, 66, 67]. For
example, when the insect flies straight north, the neuron
encoding north will be most active, whereas the neuron en-
coding south will be least active (see also eq. (1)). While
the insect’s nervous system typically operates with a num-
ber of eight to nine such neurons, the resource constraints
of the small BrainScaleS-2 prototype require reducing this
number to four. Each of the modeled TB1 neurons there-
fore corresponds to one of the four cardinal directions (see
fig. 2).

Odometric information, i.e. information on the agent’s
speed, is derived from the optical flow across the left and
right eye, respectively. Also in this case, the neuronal en-
coding is modelled after physiological observations. In par-
ticular, two tangential noduli (TN) neurons, which pene-
trate the central complex, coming from the lateral accessory
lobes [13] spike with a rate proportional to the optical flow
across the respective eye in one particular direction. For
example, if the insect flies forward with maximum speed,
the firing rate of these cells increases to a maximum. If
it flies backward with sufficient speed, these neurons stop
spiking. A detailed mathematical description of all sensors
is given in section 4.1.

The output of both sensor populations is then processed
by integrator neurons that mimic the CPU4 population
found in the insect brain. Those cells are grouped into
two symmetrical subpopulations, each containing eight to
nine neurons which are, like in TB1, associated with the
aforementioned azimuthal directions. Again, this number
is reduced to four cardinal directions due to resource con-
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straints on BrainScaleS-2, resulting in a total of eight em-
ulated CPU4 neurons. In [13], each CPU4 cell implements
a heuristically defined differential equation that integrates
the presynaptic activities of TN and TB1 over time and
outputs a numerical value in proportion to the accumu-
lated value (see eq. (8) in section 4.3). As spiking LIF
neurons are not capable of integrating or storing synaptic
input signals in such a manner, we based the integration
mechanism on axo-axonic synapses [68]. This synapse type
plays an important role in the gill and siphon withdrawal
reflex of the sea snail Aplysia [69] but is commonly found
in insect brains as well [70]. Unlike in the more commonly
found axodendritic synapses, the presynaptic neuron does
not attach to the postsynaptic dendritic tree but to a post-
synaptic axon terminal. Here, its activity can modulate the
weight of the following synapse [71, 72], effectively imple-
menting an activity-driven synaptic integration mechanism
(see eq. (9) in section 4.3). Based hereon, the CPU4 popu-
lation as a whole implements a working memory, in which
the direction and distance to the home location is stored
and continuously updated. Specifically, the vector connect-
ing the current position to the origin is equal to the vector
encoded by the CPU4 activities.

The vector pointing toward the home location, as en-
coded in the output of the CPU4 population, is then com-
pared to the current movement direction provided by the
TB1 cells. On BrainScaleS-2, this computation is per-
formed by a symmetrically subdivided population of eight
neurons in total modeled after biological CPU1 cells. Each
CPU1 subpopulation receives excitatory one-to-one input
from CPU4 with identical source and target index, but also
inhibitory one-to-one input where the index assignment
is rotated by 180° (see fig. 2). This differential mapping
helps suppress the common average activity of the entire
CPU4 population while amplifying the activity differences
between the individual pairs of opposing cells, emphasizing
the stored direction. Furthermore, the current direction of
motion indicated by TB1 acts inhibitorily and rotated by
90° or −90° on the left or right CPU1 subpopulation. Con-
sequently, the summed activity of the left and right CPU1
subpopulation is inversely proportional to the alignment
between the home vector and the current heading direc-
tion tilted to the right and left, respectively. Hence, steer-
ing signals can be derived from CPU1 that guide the insect
back to its nest. The corresponding summations are carried
out by a left and a right motor neuron ML/R. These neu-
rons were not derived from observations of the bee brain
but introduced to transfer computational load from the
digital processor on BrainScaleS-2 to the accelerated neu-
romorphic substrate, improving the efficiency of the entire
emulation.

In the second part of the experiment, the return phase,
the insect’s motion is no longer externally imposed but
derived from the outputs of these two motor neurons. They
influence the insect’s motion by providing propulsion on
the left and right hand side, similar to a tank drive.

All experiments run for 200ms and the insect is set to
return after treturn = 50ms. Translated to the biological
time domain, this corresponds to a total duration of around
3.3min while the outbound journey lasts for 50 s.

Note that this duration is not intrinsic to model or hard-
ware but can be set arbitrarily. Here, we adjusted it to
provide quick experimental throughput, while keeping the
time scales of the neural processes and the time scales of
the foraging in a biologically realistic relation to each other.
Specifically, the neuron dynamics take place within O(ms)
(O(µs) on hardware) while the foraging happens within
O(min) (O(100ms) on hardware).

Moreover, as the memory resources on the BrainScaleS-2
prototype are limited, the chosen duration provides a de-
cent tradeoff between time resolution and length of the
recorded movements and neural activities.

By bringing together all the mentioned components and
settings, the agent can be put into operation.

2.3 Experiment execution

Figure 3 shows the trajectory and network activity for a
single journey. While t < treturn, the insect performs a
random walk through its environment. During this phase,
it continuously integrates its current course, indicated by
the compass neurons in TB1 and the odometric sensors
TN, within the left and right CPU4 populations. While
the activity among these neurons is initially homogeneous
(at t = 0 s), the individual firing rates diverge as the insect
moves away from its home location. The firing rates of the
CPU4 neurons collectively encode the current vector from
the insect to the home location.

Simultaneously, the CPU1 populations compute the dif-
ferences between this vector and the current left and right-
tilted heading direction while the motor neurons ML/R ag-
gregate their activities.

After a fixed amount of time has passed (at t = treturn),
the motor neurons ML/R assume control over the insect’s
motion and steer it back home. A discrepancy in activity
between ML and MR induces a change in direction for the
insect, while similar activities set it on a straight path,
autonomously regulating its course as long as the motor
neurons remain in control. As the home vector shrinks, the
firing rates of CPU4 are brought back into equilibrium.

In some instances, the insect first approaches an orthogo-
nal axis (e.g the positive vertical axis in fig. 3) before taking
a straight line back to its home. This artifact becomes more
pronounced as the maximum traveled distance increases.
It occurs when the input stimuli of CPU4 cells become
high enough to saturate their output activities towards the
maximum spike rate. As this happens, the home vector,
as communicated to CPU1, gets compressed in the most
dominant direction and therefore rotationally distorted, re-
sulting in the observed behavior. However, as the distor-
tion only emerges in the output activities of CPU4, not in
the stored values, it does not influence agent’s accuracy or
reliability.

After reaching its home location at t ≈ 100ms the insect
begins swarming around it for another 100ms. The motor
neurons, under the influence of CPU1’s alternating deci-
sions, trigger frequent turns, thus maintaining the agent in
close proximity. As it thereby repeatedly approaches and
departs from the origin, the home vector in CPU4 dynam-
ically contracts, expands, and rotates.
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Figure 3: Network activity and trajectory. The top left
plot shows the entire trajectory consisting of the
outbound (black) and return phase (gray). The
top right plot shows a zoom into a region mea-
suring 5000 × 5000 steps around the origin where
the agent loops around after his return. Four par-
ticular moments are highlighted as blue dots and
connected to the network activity plot below: the
moment of return, reaching the home location,
and two situations during the looping phase. The
neuron activities are measured as output spike
counts in 1ms intervals (corresponding to 1 s in-
tervals in the biological time domain) and are
displayed color-coded over time. The maximum
count is approximately 100 which corresponds to
an instantaneous spike rate of 100 kHz (equiv-
alent to 100Hz when translated into biological
time scales).

The results, as depicted in fig. 3, validate that path
integration-based navigation can be realized with accel-
erated neuromorphic circuits. They also show that the
recorded movements and neural activities closely resemble
those observed in biology [13, 15]. The experiment demon-
strates that neural structures derived from insect brains
can be mapped onto neuromorphic hardware to effectively
control a virtual agent, thereby realizing a biomimetic cy-
bernetic steering system.

2.4 Statistical performance and optimization

Furthermore, we performed statistical analyses to explore
the properties and performance of the emulated insect. A
series of 1000 independent experiments reveals that the
agent always returns into the correct direction and typi-
cally stops at the correct distance. On average, the return
location (computed as the mean position over 100ms dur-
ing looping) deviates from the actual home location by
842 steps. This falls within a circle around the origin, ac-
counting for 4.9% of the median traveled outbound dis-
tance, or merely 0.24% of the area covered in by the me-
dian outbound journeys. The histogram over the trajec-
tories during looping, i.e. after t = 2 · treturn, is shown in
fig. 4 A.

The distances given in integer unit lengths can be visu-
alized more intuitively by relating them to physical quan-
tities. Assuming typical traveling velocities of honeybees
in the field (roughly 7m s−1 according to [73]), the median
journey radius corresponds to 618m (17 309 steps) and the
average deviation from the origin to approximately 23.6m.
Please note, however, that this might differ substantially
when more accurate data for Megalopta genalis or other
species is taken into account, or when the circumstances
are modelled more accurately (considering varying flight
speeds for outbound and return trips, obstacles, wind,
etc.). The metric distances should therefore be understood
solely as an illustrative aid.

To further improve the performance of the neuromor-
phic agent we optimized the synaptic weights based on an
evolutionary strategy [74]. The optimization yielded a al-
most five-fold improvement in the average deviation of the
return location, reducing it from 4.9% to 1.0%. Using
the traveling velocities given above, this corresponds to a
reduction from 23.6m to 4.7m. We also found that the
insect’s motion around the return location becomes more
narrow, reducing the average looping radius by 22%. The
results are listed in more detail in table 1 and illustrated
in fig. 4.

In line with a number of previous studies and experi-
ments [33, 51, 55, 59, 60, 75], this confirms that device mis-
matches and inaccuracies intrinsic to analog neuromorphic
hardware can be compensated by parameter optimization.

3 Discussion

This paper describes how a neural network model faithfully
derived from physiological observations of insect brains can
perform reliable and accelerated two-dimensional path in-
tegration on analog neuromorphic hardware. The navi-
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µx/µy σx/σy overlapping within r = 1000
primitive -313/-774 1419/1398 69.3% 91.1%

optimized -75/150 1125/1066 88.7% 98.9%

relative
improvement -76%/-81% -21%/-24% +28% +8.6%

Table 1: Mean displacement and standard deviation before and after evolutionary optimization. In the primitive state
69.3% of the return trajectories overlap the home location directly and 91.1% are within an r = 1000 radius
around it. After evolutionary optimization this increases to 88.7% and 98.9%, respectively.
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Figure 4: Statistical performance of the evolutionary op-
timization. Three sample trajectories generated
by the primitive (left) and the evolved network
(right). Below is a 6000 × 6000 zoom into the
center region that shows a histogram over the
data points of the looping phase of 1000 trajec-
tories. The primitive network’s center of loop-
ing is shifted to the lower left with a broad and
elliptically deformed looping area. The evolved
network is more centered and exhibits tighter and
more symmetric looping behavior. The lower left
plot shows the population fitness (gray) and the
fitness of the best three individuals (blue). For
each individual, the faint line is the actual fit-
ness whereas the strong line provides a moving
average for better visibility. The optimization
converges after ∼ 200 steps.

gating agent thereby consists of the physically emulated
neuromorphic brain connected to a virtual body via mixed-
signal sensors and motor units. All these components are
implemented and autonomously executed on a single neu-
romorphic chip.

To realize biologically viable integrators, we introduced
a single-cell spike-based short-term memory mechanism
based on axo-axonic synapses. This mechanism has not
been implemented on neuromorphic hardware before and
we are not aware of any studies in the computational neuro-
sciences that have yet employed such a neural construct for
similar purposes. As it is application-agnostic, it can po-
tentially be utilized in various other scenarios beyond path
integration, where flexible and network-interactive spike-
based short-term memory cells might play a role.

Here, these memory cells provide the key elements for
implementing the spike-based neuronal navigation circuit.
Primarily through them, the underlying network model,
which initially relied entirely on heuristically described dif-
ferential equations [13], could be translated into a network
of spiking LIF neurons. To our knowledge, this constitutes
the first publication of a purely spike-based path integra-
tion model.

To comply with the limitations in network size of the
BrainScaleS-2 prototype, we reduced the angular resolu-
tion of the neural compound from eight to four divisions
without compromising the navigational functions. In ad-
dition, we omitted a population of pontine neurons which
map input from the excitatory CPU4 populations inhibito-
rily onto CPU1 [13]. This is possible because BrainScaleS-2
does not obey Dale’s principle [76], allowing the neuromor-
phic CPU4 populations to both excite and inhibit post-
synaptic partners. Therefore, they can fully absorb the
function of the pontine populations. With respect to the
source model [13], the number of neurons in the path inte-
gration circuit (consisting of TB1, CPU4, CPU1, and op-
tionally the pontine population) was, hence, reduced from
56 down to 20. As the head direction neurons in TB1
are implemented virtually on BrainScaleS-2, and since two
additional motor neurons were introduced to offload nu-
merical summations, the total number of neurons on hard-
ware is only 18. The remarkable functional richness that
the insect brain generates with so few neurons could thus
be replicated and even further condensed on neuromorphic
hardware.

While the primitive network configuration was already
able to successfully navigate, its performance could be im-
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proved with an evolution strategy-based optimization act-
ing on the synaptic weights. The evolution of 15 indi-
viduals, each performing an entire spread-out and homing
journey, through 320 generations took only 32 minutes on
a single neuromorphic core. Had this evolution not been
carried out on BrainScaleS-2 with its highly accelerated
neurons but in the same configuration on a real-time sys-
tem, it would instead have taken more than 11 days. Even
on a multi-core real-time system with enough compute re-
sources to fully parallelize all individuals, it would still have
taken 17.8 hours to breed 320 consecutive generations. As
each generation depends on its predecessor, this execution
time can intrinsically not be further reduced on a real-time
emulator.

Moreover, as the emulation speed on BrainScaleS-2 does
not depend on the network size, the rapid experimental
throughput can also be obtained for larger networks, and
the longer the simulation time is, the more significantly this
advantage manifests. Neuroplastic developments in mam-
mals, for example, can extend over many weeks, months or
even years. In order to simulate such processes and itera-
tively adapt their model parameters to biology, accelerated
emulators are, therefore, absolutely indispensable.

In scenarios where the accelerated neural network needs
to interact with external entities, like sensor organs, motor
units, the entire body, or its environment, those entities
have to be simulated at a higher speed as well. Otherwise,
the various components would act on different time scales
and the biological phenomena could, hence, not be repro-
duced with plausibility and accuracy. For the presented
agent, the entities belonging to the extraneural domain
were therefore modelled and implemented with the same
acceleration factor on the digital on-chip co-processor to
guarantee consistency and synchronicity between the brain
and the body.

Thus, we demonstrated that the 1000× acceleration fac-
tor enables biologically detailed neurorobotic experiments
at an unprecedented throughput, cutting down emulation
times by three orders of magnitude as compared to similar
studies carried out in biological real-time. Since the ex-
tent of such experiments is not physically limited and the
technical capabilities of BrainScaleS-2 are by no means ex-
hausted, we are confident that further neurorobotic closed-
loop experiments will take advantage of the considerable
benefits of accelerated neuromorphic hardware in the fu-
ture. This kind of experiments can substantially contribute
to a better understanding of the functional interaction be-
tween neuronal structures and their environments.

4 Methods

4.1 Sensory inputs

The neural network receives input from two classes of sen-
sors, the TB1 compass and the TN flow field sensors. Both
use rate encoding to translate the sensory input into spike
trains that can be processed by the LIF neurons at a max-
imum rate of rmax = 100 kHz corresponding to 100Hz in
the biological time equivalent.

ϕ(t−1)

Θ
v

ϕ(t)

∆ϕ

head direction (t-1)

(t) 0°

0°

Figure 5: Coordinate system of the insectoid agent. Θ is
the direction of flight and ϕ(t) and ϕ(t−1) the head
direction of the current and the previous time
step, respectively. ∆ϕ is the difference between
both and indicates the head rotation. As the
time interval is discrete and defined to be 1, the
traveled distance is equal to the velocity vector
v.

The TB1 population comprises four neurons TB1j with
j = {0, 1, 2, 3} that encode the head orientation ϕ in their
output activity:

rTB1j =
rmax

2
·
[
1 + sin

(
ϕ+

j · π
2

)]
. (1)

One TN flow field sensor measures a scalar velocity into
one selected direction of its own movement relative to the
environment. Its output depends on the head rotation ϕ
relative to the insect’s velocity v, the static rotational sep-
aration ϕTN of the bilateral sensor relative to ϕ, and the
head rotation ∆ϕ(t) = ϕ(t) − ϕ(t−1) between the last and
the current time step (see fig. 5):

rTNL/R
= ∓|v| · sin(Θ− ϕ± ϕTN )± ρ ·∆ϕ. (2)

Θ is the direction of the insect’s velocity

v = v ·
[
cos(Θ)
sin(Θ)

]
(3)

and ρ is a constant scaling factor for the head rotation that
is proportional to the interocular distance between the two
flow field sensors. For the experiment, we select ρ = 2 and
restrict ourselves to Θ = ϕ. Stone et al. [13] demonstrated
that the model can tolerate a significant constant offset
Θ ̸= ϕ.
Equation (2) can therefore be reduced to

rTNL/R
= |v| · sin(ϕTN )± ρ ·∆ϕ. (4)

4.2 Motor outputs

Following Stone et al., the average activity of the left and
right CPU1 populations determines the insect’s direction
of movement. We connect all neurons of a CPU1L/R popu-
lation to one motor neuron ML/R in order to compute the
average. On BrainScaleS-2 these connections are realized
by a single synapse that receives input from all four CPU1
neurons per hemisphere.

The motor neuron’s spike rate is then translated into a
directional velocity update

∆ϕ = ∆Θ = µ · (rML
− rMR

) (5)

where µ = 1.6 is a heuristically set scaling constant. The
absolute velocity |v| stays constant.
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4.3 Neuron model

The circuit proposed in [13] is based on a firing-rate neuron
model with a synaptic input current

Ij =
∑
i

wijri (6)

of the jth neuron. The output of the jth neuron is obtained
by applying a logistic function

rj =
1

1 + eaj ·Ij−bj
(7)

to the internal state Ij , where aj and bj are two real-valued
model parameters that are similar for all neurons. This
transfer function is a commonly used choice to approximate
the rate output of spiking neuron models under stochas-
tic influence [77–82]. Our empirical measurements of the
analog neurons on the chip have revealed similar transfer
curves (see fig. 6B).

Equations (6) and (7) apply to the neurons in the three
subcircuits TN, TB1, and CPU1. The neurons in CPU4,
which are responsible for integrating over the traveled path,
behave differently. Their internal state is given by

I
(t)
CPU4 = I

(t−1)
CPU4 + h ·

(
r
(t)
TN − r

(t)
TB1 − k

)
(8)

with a discrete time t, coupling strength h and decay con-
stant k. It therefore depends on its own previous internal
state and the output rates of TN on TB1. The time con-
stant of this dynamical process is roughly on the order of
the duration of the entire journey, i.e. around 200 s in bi-
ological time.

Since the synaptic time constant of typical neurons is on
the order of 1ms to 100ms and the membrane potential
is reset after each firing event, eq. (8) cannot not solely
emerge from the dynamics of a single LIF unit. Also,
a single-cell feedback mechanism based on self-recurrent
synapses would not allow for an integration over these
time scales while maintaining the necessary precision and
stability. Since each glomerulus [15] in the respective
compartments of the central complex contains exactly one
CPU4 neuron and only a small number of other neurons
(O(1−10)), it is also unlikely that the time scales required
by eq. (8) arise from recurrent connections within small
clusters of LIF-like cells.

Neural adaptations (as modeled by AdEx-equations [83]
for instance) neither act on suitable time scales, as they
typically last for no more than several seconds (usually
several hundred ms) [84]. The same holds true for short-
term synaptic facilitation and depression [85].

Among the remaining options are long-term synaptic
plasticity and synaptic modulations, in particular, presy-
naptic facilitation and depression [71, 72]. As described
in section 2.2, this type of synaptic modulation involves
axo-axonic synapses which are formed between the axons
of facilitating or depressing presynaptic neurons and axon
terminals of postsynaptic neurons. While the axo-axonic
synapse itself remains constant over time, the activity it
projects on the postsynaptic axon terminal modulates the

A
static source

TNL/R

TB1i

+

−
wCPU4,j

CPU4j

B

0 500
wCPU4

0

50

100

r C
P
U
4
[k
H
z]

Figure 6: Axo-axonic depression and facilitation. A) A
synapse that forms an excitatory connection to
a background source with a constant spike rate
is modulated by two axo-axonic synapses. Ac-
tivity coming from the TNL/R axons facilitates
the synaptic weight wCPU4,j , while activity from
TB1i inhibits it. The neuron responds with an
output rate rCPU4,j . B) Output rate vs. weight.
The plot shows an overlay of the transfer func-
tions of eight CPU4 neurons on BrainScaleS-2.

weight of the following synapse between the targeted ter-
minal and the corresponding postsynaptic neuron. Presy-
naptic modulations can occur on short-term memory time
scales (O(10min)) [71] and, therefore, comply with the de-
mands of eq. (8).

We implement eq. (8) through axo-axonic weight mod-
ulations of excitatory synapses coming from background
spike sources that are firing periodically at a constant rate
(see fig. 6). The strengths of those synapses are reduced
or increased on short-term memory time scales by presy-
naptic facilitation or depression [71, 72]. In our case, these
neurons correspond to the TN and TB1 subpopulations.
Thus, in order to reproduce the behavior of eq. (8) on
BrainScaleS-2, one background spike source with a con-
stant average rate is connected to each integrating neu-
ron through an excitatory synapse with a variable weight
wCPU4,j . The integrating neuron therefore responds with
an average output spike rate r that is proportional to this
weight. To that end, the synapse realizes the short-term
memory dynamics which are necessary for the distance in-
tegration. In analogy to eq. (8), we have

w
(t)
CPU4 = w

(t−1)
CPU4 + h ·

(
r
(t)
TN − r

(t)
TB1 − k

)
(9)

A parameter sweep revealed an optimal parameter combi-
nation of k = 2 and h = 0.0336.
We would like to add that the background spike sources

fire periodically due to the tight timing demands of the
code execution on the BrainScaleS-2 prototype. Spike
sources with Poisson-distributed numbers of spikes per
time interval would be favorable because they would in-
troduce a more stochastic behavior, blurring out artifacts,
and appear biologically more plausible. However, in sim-
ulation we found that the relevant statistical performance
is not measurably affected by the strictly periodic sources
and in hardware, jitter and intrinsic analog noise addition-
ally mitigate possibly introduced artifacts to some degree.
Moreover, the current full-scale version of BrainScaleS-2
offers configurable on-chip Poisson spike generators and,
hence, renders the circumvention by periodic sources in fu-
ture experiments obsolete.
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4.4 Experiment scheduling

In order to run the environment and agent simulation in
temporal coherence with the dynamics of the neural net-
work, code execution has to be carefully scheduled. Every
experimental run starts with transferring a set of parame-
ters from the host computer to the BrainScaleS-2 system.
This includes a random seed, the experiment run time tstop,
the time at which the agent is to return treturn, the CPU4
decay k, the CPU4 update scaling h, and the weights of
all but the CPU4 input synapses. Subsequently, the code
execution is started on the PPU.

During runtime, the PPU executes the simulation
and implements the sensory input spike sources. One
agent/environment update is conducted every ∆t = 100µs,
which corresponds to a movement update rate of 10Hz in
the biological time equivalent. To achieve a maximum bi-
ological spike rate of 100Hz, i.e., 100 kHz on the chip, the
spike sources have to be able to send a spike every 10 µs.
As the code execution time for one full agent/environment
update exceeds the time between two consecutive spikes,
it is divided into three subcycles that are called between
spike sending routines:

• iterate the insect state and transmit the sensory input
to the TN and TB1 spike generators,

• read the CPU4 weights and calculate their updates,

• write back the updated CPU4 weights, process the
motor neuron output and update the agent velocity
accordingly, update the simulation state, and store the
trajectory data.

At t = treturn, the agent switches from random to model-
driven movement. The simulation stops at t = tstop. At
that point, the trajectory data and spikes are read back
from the host computer.

The BrainScaleS-2 prototype chip can record all post-
synaptic spikes using the connected FPGA, while the avail-
able on-chip memory for arbitrary data storage is lim-
ited to 4 kB. The latter is used for saving the trajectory
from which the velocity and the optical flow can be recon-
structed. Both the x and y coordinate are 16 bit signed
integer values. Therefore, a total of 1000 locations can be
stored. With n = tstop/∆t = 2000 time steps in one run,
every second step is written to memory. Figure 7 gives an
overview of the scheduling.

4.5 Discretization of synaptic weights

While in [13], the internal state of the integrator neurons
have floating point precision and a corresponding dynamic
range, the 6 bit discretization on BrainScaleS-2 limits the
number of possible weights per synapse to 64. In order
to extend this range, we additively join 16 synapses to-
gether into one supersynapse. One presynaptic partner is
connected to one postsynaptic neuron over 16 synapses,
forming one supersynapse with a possible weight of 0 to
16 · 63 = 1008. The dynamic range is therefore extended
from 6bit to almost 10 bit.

0 100 200 300 400

A setup experiment readout

49.6 49.8 50.0 50.2 50.4

B spread out return

49.88 49.90 49.92 49.94 49.96 49.98 50.00
t [ms]

C 3 1 2 3 s

Figure 7: Experiment schedule. A) The experiment starts
with a setup phase in which the parameters are
transferred to the BrainScaleS-2 prototype and
the synaptic weights are initialized. The actual
experiment, starting with a spread out phase fol-
lows. After that, data is read back from the sys-
tem memory to the host. This phase’s execution
time is stochastic and depends on the amount
of spikes produced in an experiment. B) Zoom
into the point of return. Each block symbolizes
an agent/environment update, the blue color in-
dicates the return phase. C) Zoom into one up-
date. The black bars mark the times at which the
spike sending routine is called. The three update
phases are represented by the white blocks 1, 2,
and 3. Position recording happens only in every
second update cycle in block s. Note that the
variable duration of the update phase executions
can introduce jitter of the following spike.

4.6 Calibration

Due to their analog design, the neuronal circuits on
BrainScaleS-2 are subject to temporal and fixed-pattern
noise. The latter is caused by manufacturing variations
and results in instance-to-instance variations of the neuron
and synapse parameters. In order to mitigate this effect,
we calibrate the neuronal firing rates on each chip and store
the results in a static data bank. For this experiment, two
calibration routines are particularly important:

The CPU1 and motor neurons are calibrated such that
their output rate is proportional to rout = rexc · (1− rinh),
where rexc and rinh is the excitatory and inhibitory input
rate, respectively.

The CPU4 neurons, on the other hand, are calibrated
to respond with an output rate that is proportional to
the weight wCPU4,j (see fig. 6B). All rates are normal-
ized to a maximum of rmax = 100 kHz and a minimum
of rmin = 0Hz. Functionally, it is relevant that the neu-
ron parameters match well around the operating point
r = 0.5 · rmax, while the behavior at the range margins
is of minor importance.

4.7 Evolutionary optimization

To mitigate fixed-pattern noise effects and further opti-
mize network performance, we employ an evolution strat-
egy with covariance matrix adaptation [74]. The opti-
mization parameters are the 26 synaptic weights w that
are connected to the CPU1 population: TB1 → CPU1,
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CPU4 → CPU1 (inhibitory and excitatory), and
CPU1 → M. To optimize for tight and precise looping
around the home position, the fitness fi of an individual
i is derived from its trajectory xi(t)t=[2·treturn,tstop) during
looping:

fi = −
〈
|⟨xi⟩t|+

∣∣∣√⟨(xi − ⟨xi⟩)2⟩t
∣∣∣〉

runs
(10)

The first term is the time-averaged radial distance to the
home location and the second term the time-averaged loop-
ing diameter. This sum is then additionally averaged over
three runs with different outbound trajectories.
Instead of selecting a fixed number of best individuals of

each generation, we take a weighted sum over the param-
eters of all individuals to derive the new mean parameter
vector for the offspring population:

µ =
∑
i

piwi (11)

pi is obtained as

pi =
p̃i∑
i

p̃i
; p̃i = f−8

i (12)

The power of eight increases the impact of high-fitness
genomes on the seed genome for the next generation, while
the impact of low-fitness genomes is scaled down. Thus,
weak individuals are not completely sorted out but still
contribute to the next generation to a low degree. The ex-
ponent therefore implements a soft selection. Note that pi
is positive due to the even exponential index. Moreover,
small absolute values of fi translate to a high pi and vice
versa.

The new population consists of 15 weight vectors drawn
from a multivariate Gaussian distribution:

wi ∼ N (µ, σ ·Σ) (13)

Here, σ = 0.3 is a heuristically chosen step size and Σ is a
covariance matrix derived from the previous generation

Σ =
∑
i

pidi ⊗ di (14)

with di = wi−µ. In this way, the variance is increased into
the direction of successful mutations. Typically, the opti-
mization converges after approximately 200 generations.
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