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Summary 

Learning goal-directed behavior requires association of pertinent sensory stimuli with 

behaviorally relevant outcomes. In the mammalian neocortex, dendrites of pyramidal neurons 

are suitable association sites1-3 but how their activities adapt during learning remains elusive. 

Here, we track calcium signals in apical dendrites of layer 5 (L5) pyramidal neurons in mouse 

barrel cortex during texture discrimination learning4. We observe diverse task-related 

responses, either localized to branches or widespread throughout the apical tuft. However, 

even in expert mice, the tufts’ capability to discriminate go/no-go stimuli remains poor. Yet, 

we identify two prevailing response types in dendritic branches: 1) responses to unexpected 

outcome (reward) in naïve mice that decrease with growing task proficiency, and 2) responses 

associated with salient sensory stimuli, especially the outcome-predicting texture touch, that 

strengthen upon learning. We demonstrate that these response types match distinct unsigned 

components of the temporal difference error5 by replicating our results with a reinforcement 

learning model. Moreover, optogenetic apical inhibition of L5 neurons during the outcome time 

window prevents naïve animals from learning the task, consistent with the effect of equivalent 

model perturbation. Our findings suggest that salience signals in L5 apical dendrites facilitate 

the recruitment of task-relevant neurons via dendritic gain modulation. 

Introduction 

Learning a new behavior requires the integration of diverse information—environmental context, 

sensory cues, specific stimuli, and associated outcomes (e.g. reward)—to drive suitable adaptations 

of brain activity and establish outcome predictions and appropriate motor actions. Accordingly, 

neuronal circuits can identify relevant stimuli and dynamically reorganize their activity upon task 

learning2. For example, neuronal populations in the whisker-related barrel field of primary 

somatosensory cortex (S1), especially those projecting to secondary somatosensory cortex (S2), 
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undergo functional changes that reflect behavioral adaptations during texture discrimination learning6. 

Likely, these changes are implemented through plasticity mechanisms at the synaptic and cellular 

levels, including adaptations in neuronal dendrites7. The complexity of dendrites with their nonlinear 

properties makes them powerful computational elements and prime candidate sites for learning-

related adjustments3,8,9. The distal apical dendrites of neocortical pyramidal neurons reach into layer 

1 (L1), which receives rich and diverse inputs from local as well as distant sources10-12. Distal dendritic 

activity can reflect sensory stimuli13,14, motor actions15,16, feedback from higher-order thalamic17,18 or 

cortical19,20 areas, and reward21. Computationally, apical dendrites may impact somatic activity 

through several mechanisms, including gain modulation22, coincidence detection of somatic and distal 

dendritic activity8, and prediction error signalling23-25. Through such mechanisms they could help to 

solve the credit assignment problem26. Yet, a unifying concept of the computational role of apical 

dendrites in learning-related brain circuit adaptations is missing22. Here, based on experimental 

evidence and modeling results, we put forward the concept that L5 apical dendritic signals reflect 

distinct unsigned prediction error terms of temporal difference (TD) learning. We propose that apical 

dendrites convey unconditioned and conditioned salience information to the neurons and thereby 

promote the recruitment of task-relevant neurons via dendritic gain modulation.  

Results 

Chronic imaging of L5 apical tuft activity during learning      

We sparsely expressed GCaMP6f in L5 pyramidal neurons in S1 barrel cortex of 6–10-week-old adult 

Rbp4-Cre mice. We specifically targeted S2-projecting L5 neurons by using an intersectional Cre/Flp 

viral labeling approach (Fig. 1a; Methods). Because Rbp4-Cre mice are not specific for L5 subtypes, 

labeled neurons presumably included L5A and L5B neurons sparsely distributed across barrel cortex 

(Supplementary Fig. 1). We trained mice (n = 8) in a go/no-go texture discrimination task4,6 (Fig. 1b; 

Methods). In each trial, we presented either a coarse (grit size P100) or a smooth (P1200) sandpaper 

to the whiskers (go-texture: P100, n = 3 mice; P1200, n = 5). Correct licking in go trials (Hits) triggered 

a water reward, whereas correct rejections (CR) in no-go trials (and Misses in go trials) were neither 

rewarded nor punished. False alarms (FA) in no-go trials were mildly punished with acoustic white 

noise. For analysis, we defined four time windows linked to the trial structure (auditory cue, touch, 

late-touch, and outcome; Fig. 1c; Methods). All mice improved their performance from naïve state 

(50% chance level) to expert level (>75%; Methods), on average requiring 1178 ± 368 trials (8-14 

days; 1 session per day; 67-209 trials per session; mean ± s.d.; n = 8 mice). To compensate for 

different learning rates, we aligned all individual learning curves to the first expert trial (Fig. 1d) and 

focused our analysis on the training period from 500 trials before to 150 trials after this time point (trial 

identifier [ID] from -500 to 150). Based on identified learning onset and first expert trial we divided the 

training period into ‘naïve’, ‘learning’ and ‘expert’ phase (Methods). With learning, mice developed  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 5, 2024. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474360


3 

 

 

Fig. 1 | Longitudinal multi-plane calcium imaging of L5 dendrites across learning. a, Dual-virus approach in Rbp4-cre 

mice to express GCaMP6f in S1→S2 projecting L5 pyramidal neurons. b, Schematic of go/no-go texture discrimination task. 

c, Trial structure with defined time windows for analysis. d, Learning curves across 650 trials aligned to first expert trial (n = 

8 mice). Black line: mean ± s.d. in 50-trial bins; grey lines: individual mice; black dots indicate transitions from naïve to 

learning period for individual mice e, Schematic of multi-plane two-photon imaging from 4 depths. f, Example calcium 

transients across all imaging planes in selected ROIs of trunk (T) and dendritic branches (D) for a single L5 tuft. Five example 

trials are shown, red circles indicate local events in distal branches. g, Heatmaps of tuft activation patterns (normalized 

ΔF/F) showing examples from the response spectrum (1: Trunk-dominated global event, 2: Tuft-dominated global event, 3: 

Local event in 3 branches, 4: Single-branch local event, 5: Trunk-only event, 6: Trial without event). Examples are from 

different tufts and each heatmap corresponds to one trial. Note the occurrence of events in different trial windows (vertical 

lines demarcate 2-s windows used for event detection). Red circles indicate local events. h, Distribution of tuft activation 

patterns. Each data point represents a 2-s event, for which a F/F transient peak was detected. For each event, the maximal 

F/F amplitude (min-to-max range) across tuft branches is plotted versus the ‘apicality’ of the event, defined as the binary 

logarithm of the tuft/trunk amplitude ratio (Methods; local events required apicality > 2). Numbers and arrows mark the events 

shown in panel g. i, Heatmaps of normalized ΔF/F traces across learning for two example dendrites (a trunk and a 2nd order 

tuft branch). Dashed vertical line indicates approximate time of first touch. Black dots indicate reward valve opening times. 

Note that the trunk exhibited early activity during trials that shifted closer to the texture stimulation time during learning, 

whereas the tuft branch displayed late activity in the outcome window that diminished upon learning.  

anticipatory whisking preceding the first whisker-texture touch as well as anticipatory whisking and 

licking before the outcome window6 (Supplementary Fig. 2a-c).  
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To investigate dendritic activity during learning, we applied multi-plane two-photon calcium imaging 

and repeatedly measured calcium transients (F/F) in dendritic tuft branches and parent apical trunks 

of S1→S2 L5 neurons throughout the training period (Fig. 1e; Supplementary Fig. 3; 30-370 µm depth 

below the pia; effective frame rate 10 Hz; Methods). We manually selected trunk cross-sections and 

dendritic branch segments (continuous stretches of 5-20 µm) as regions of interests (ROIs). Multi-

plane calcium imaging enabled us to simultaneously record activity in multiple compartments of the 

same apical tuft (Fig. 1f). We observed diverse tuft activation patterns, including ‘global’ events, i.e., 

concurrent large-amplitude signals in the trunk and several or all tuft branches, and ‘local’ events, i.e., 

clearly detectable calcium signals in only one or few tuft branches with no detectable signal in the 

trunk (Fig. 1g). In addition, large trunk signals could occur without clear activation of tuft branches 

(‘trunk-only event’). Global events likely are associated with dendritic calcium spikes and somatic 

action potential bursts27,28, whereas local events in tuft branches may reflect distinct forms of dendritic 

spikes20,29 that were not sufficiently strong, or lacked coincident somatic excitation, to trigger calcium 

spikes near the main bifurcation. 

For quantification, we detected tuft events based on local peaks in a 2-s sliding window across all 

trials and categorized them into local events versus global or trunk events (Fig. 1h; see Methods for 

criteria). Individual apical tufts could show local events with distinct activity patterns, i.e., engaging 

different subsets of tuft branches, which sometimes re-occurred in multiple trials across days 

(Supplementary Fig. 4). Overall, we detected at least one tuft event in 28.5% of all 24’330 recorded 

trials, out of which 24.2% were classified as local events (1678 of 6943 detected events). Thus, local 

tuft events were relatively frequent in S1 L5 neurons under our conditionsbut with high variability. In 

view of this high variability, we decided to focus our analysis of learning-related changes mainly on 

the single-branch level, without considering whether an individual branch signal related to a local 

event or occurred as part of a global event. As exemplified by F/F traces from the trunk and a tuft 

dendrite belonging to the same L5 example neuron (Fig. 1i), dendritic branches differed not only in 

the timing when they were preferentially active during trials, but also in the dynamic changes of their 

activity profiles across learning. These learning-related changes in dendritic activity did not correlate 

with the observed behavioral changes in whisking and licking (Supplementary Fig. 2d,e), suggesting 

a more specific role in learning dynamics.  

Two major types of learning-associated dendritic response dynamics  

For a comprehensive analysis of task- and learning-related dendritic dynamics in our entire data set, 

we identified and selected trials with significant F/F traces (Methods). For visualization we used a 

UMAP embedding based on the similarity of the trial-related F/F traces. Both the short timescale 

(within single trials) and the long timescale (across trials) are reflected in the UMAP plot (Fig. 2a): 

First, color-coding according to the onset times of clearly detectable dendritic calcium transients  
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Fig. 2 | Two dendritic subclasses defined by distinct changes in sensory and reward representations. a, Top: 
Correlation-metric-based UMAP embedding of all recorded ΔF/F traces with detectable transient onsets, colored according 
to transient onset time. Inserts: ΔF/F traces and average ΔF/F traces associated with local 2D neighborhoods. Bottom: 
UMAP embedding colored according to smoothed trial ID (8 mice, 22’027 traces). b, Top: Schematic depiction of the 
transformation clustering method. c, Hierarchical link clustering identifying of two functionally distinct clusters of dendritic 
responses by their change in ΔF/F transient onset distribution over learning. Middle: UMAP embedding of data points 
belonging to the respective cluster colored by smoothed trial ID (see Fig. 2a bottom). Bottom: Smoothed normalized 
distribution of calcium transient onset times across trial time in the naïve and expert conditions for both clusters. d, Transient 
onset probability during learning in cue, touch, late-touch and outcome window in sensory-driven and outcome-driven class 
(Sensory branches: Cue window: naïve vs. expert: p= 0.03; Late-touch: naïve vs. expert: p=0.05. Outcome branches: 
Outcome window: naïve vs. learning: p=0.02.). e, Percentages of trunks and apical branches per class. Branches with 
insufficient data (i.d.) were not assigned to a class. f, Reconstruction of example tuft from a two-photon image stack. Left: 
Branches are colored according to the respective HL class. Right: Branches are colored according to fuzzy c-means 
clustering. g, Class assignment of apical trunks in relationship to the percentage of branches classified as sensory and 
outcome. h, Fraction of branches per neuron assigned to each cluster (42 tufts; sorted according to trunk class, sub-sorted 
according to percentage of sensory branches). 
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(Methods) shows that dendritic activity is distributed over the entire trial time course, including cue, 

touch, late-touch, and outcome windows (upper plot, Fig. 2a). A small fraction of traces displayed 

transients with double peaks in both cue and outcome windows, represented in the middle of the 

UMAP plot. Second, color-coding based on trial ID revealed an interesting pattern of 

overrepresentation of calcium signal onsets around the touch window start in expert trials, whereas 

in early naïve trials calcium transients in the cue and outcome windows appeared more abundant 

(lower plot, Fig. 2a; for color-coding of other features see Supplementary Fig. 5). This overview 

indicates that apical dendritic activity in S1→S2 L5 neurons reflects various task-related events and 

that the trial-related temporal pattern of dendritic activation reorganizes during learning.  

To evaluate this functional reorganization of dendritic dynamics quantitatively and to examine whether 

consistent learning-related patterns exist, we developed ‘transformation clustering’, a statistical 

approach to identify dendritic branches (including apical trunks) that exhibited similar learning-

associated activity changes. Specifically, we compared the high-dimensional single-trial responses 

(not the dimensionality-reduced UMAP data points) for all possible dendrite pairs across learning 

using a nearest-neighbour method30 and analyzed the resulting dissimilarity matrix with hierarchical 

link (HL) clustering (Fig. 2b; we greedily expanded clusters by also assigning dendritic ROIs with 

sparse activity; Methods and Supplementary Fig. 6). We identified two major functionally distinct types 

of dendritic activity changes across learning. One type (Cluster 1; referred to as ‘outcome’ type) shows 

abundant and large calcium transients in the outcome window for rewarded Hit trials in naïve mice 

and a reduced probability of these outcome-related responses in experts (Fig. 2c,d). These changes 

are evident in the average onset distributions of F/F transients across trial time as well as across 

learning (Fig. 2c; they are less obvious in averaged F/F traces, though; Supplementary Fig. 7). The 

second functional type (Cluster 2 or ‘sensory’ type) comprises dendritic branches that display an 

increasing probability in expert mice of F/F transients during the cue and touch windows (Fig. 2c,d). 

This response type apparently highlights time windows of salient task events, particularly the reward-

predicting texture touch. The distinct temporal dynamics of outcome and sensory response types 

across learning are also evident in the respective UMAP subplots (Fig. 2c and Supplementary Fig. 5).  

To analyze the tuft composition in terms of functional types, we evaluated 42 neurons with identified 

trunk ROIs. For both trunks and tuft dendrites, about half belonged to the sensory class and about 

one third to the outcome class as determined by HL clustering (Fig. 2e). The remaining dendrites 

could not be assigned to a class because of insufficient number of data points (i.d.). Additional to the 

HL clustering we performed fuzzy c-means clustering, revealing that the two dendritic classes 

represent two extremes of a continuum of dendritic activity patterns (Fig. 2f; Supplementary Fig. 8). 

In 38 of 42 neurons the tuft contained dendritic branches of both functional types, with the functional 

type of the trunk largely matching with the most abundant type in its tuft branches (Fig. 2g,h; see also 
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F/F traces of example neurons in Supplementary Fig. 9). No difference in morphology was obvious 

in tufts dominated by either of the functional classes (Supplementary Fig. 10). Taken together, we 

identified two major functional types of dendritic responses with distinct changes in their activity 

profiles across learning. We interpret these response types as reflecting changes in the effective 

strengths of distinct input streams converging on individual L5 dendritic tufts, carrying information 

about context (auditory cue), relevant sensory stimulus (touch and late-touch), and reward (outcome 

window). We next asked what computational role these dendritic response types might have.    

Dendritic response types reflect distinct unsigned TD prediction error components 

We first examined whether dendritic branches of the two types or entire tufts attain the ability to 

discriminate different trial types as reported for L2/3 neuronal somata4,6,31. To assess discrimination 

power, we trained a linear decoder on either whole-tuft or individual-branch data and evaluated its 

performance using receiver operating characteristic (ROC) analysis (Methods). Even when 

considering whole-tuft activity, no significant discrimination power emerged upon learning, neither for 

sensory-dominated tufts in the touch window nor for outcome-dominated tufts in the outcome window 

(Fig. 3a; Supplementary Fig. 11 for individual branch analysis). This result suggests that dendritic tufts 

may be less important for fine discrimination of the relevant stimulus but rather for accentuating time 

windows of salient task-related events: the unconditioned reward (or punishment) in the outcome 

window in the naïve state when outcomes are unexpected and the conditioned sensory stimuli 

(predictive auditory cue and whisker touch) when the animal has learned the task structure. 

We recognized that the two types of branch responses resemble two unsigned (salience) components 

of the classic temporal difference (TD) error that is used to update a state-value estimation5. 

Specifically, these components represent the unconditioned salience, 𝑠𝑈, of unexpected outcome and 

the conditioned salience, 𝑠𝐶 , of task-relevant, outcome-predictive stimuli (Fig. 3b; Methods and 

Supplementary Note 1). We cast this idea into a computational model of a population of multi-

compartmental L5 pyramidal neurons using TD reinforcement learning to train a state-value estimator 

function 𝑉̂ (Fig. 3b; Supplementary Note 2). For each neuron 𝑖, 𝑑𝑖
out and 𝑑𝑖

sen are the activities in two 

branches of the apical dendritic compartment, representing the two functional branch types (outcome 

and sensory). The sum of 𝐝out and 𝐝sen determines the apical dendritic activities 𝐱ap, which modulate 

the multiplicative gains 𝐠 that govern the somatic activities 𝐱som (Fig. 3b; Supplementary Fig. 12b-

c). 𝐝out is driven uniformly across all dendritic tufts with a fixed input strength by an input representing 

the unconditioned salience, defined as the absolute value of the reward prediction error, 𝑠𝑈 = |𝑅 −

𝑅̂|. The conditioned salience input is learned to represent the unsigned temporal changes in 𝑉̂, 𝑠𝐶 =

 |∆𝑉̂| =  |−𝑅̂ + 𝛾∆𝑉̂𝑆| across trial time, which comprises changes due to expected outcomes when 

time progresses (−𝑅̂) and relevant sensory stimuli as part of state changes (∆𝑉̂𝑆) (Fig. 3b; 

Supplementary Note 1; 𝛾 is a discounting parameter). 𝑠𝐶  is imposed on the sensory branches to drive 
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𝑑𝑖
sen via neuron-specific plastic apical weights 𝑤𝑖

ap
. The plasticity of these synapses is governed by 

local coincidence detection between postsynaptic activity and dendritic inputs such that task-relevant 

neurons experience synaptic potentiation and task-irrelevant synaptic depression (Supplementary 

Fig. 12, Supplementary Note 3). The state-value function estimator 𝑉̂ and the action policy (lick or no-

lick) are learned by adjusting synaptic weights 𝑤𝑉 and 𝑤𝜋 that connect the somatic output of the L5 

population to both a Δ𝑉̂𝑆 estimation network and an action selection network (Fig. 3b; Supplementary 

Note 2). We presume that the state-value estimation and action selection occur in neural circuits 

outside of barrel cortex that establish value representations and motor plans during learning, likely 

involving frontal cortical regions32.   

 

Fig 3. | Computational model of salience learning predicts dendritic activity changes in vivo. A, Discrimination 

analysis of tuft ΔF/F patterns to discriminate sandpaper texture in the texture window (2.4-3.9 s) or trial outcome in the 

outcome window (5-7s) using a linear support vector machine (SVM) across all tufts in the naïve (N), learning (L), and expert 

(E) state. Grey lines indicate 95% and 5% quantile of shuffled data (mean ± s.e.m.). b, Left: Schematic of the computational 

model for salience-based TD-learning in S1 L5 neurons. See main text and Methods for details. Upper right: definition of the 

two unsigned components of the TD error, representing unconditioned and conditioned salience. For completeness, the  

parameter 𝛾 for discounting is included in the equation but we did not consider discounting (𝛾 = 1). Lower right: example 

learning curve of the model. c, Simulation of activity across trial time and trial ID in the three compartments (sensory branch, 

𝑑𝑖
sen; outcome branch, 𝑑𝑖

out; and soma, 𝑥𝑖
som) of Go and NoGo neurons during Hit trials. d, Depiction of the modelled state-

value estimator 𝑉̂, its change over trial time and the absolute value thereof, corresponding to conditioned salience, for Hit 

(top) and CR (bottom) trials. e, Comparison between 2P imaging results (left) and model simulations (right) of ΔF/F calcium 

transient event probability in Hit trials per trial window across learning for sensory (top) and outcome (bottom) dendritic 

branches. Imaging data: 42 tufts, mean ± s.e.m; Sensory branches: Outcome window, naïve vs. expert, p=0.006; Touch 

window: naïve vs. expert, p<0.001; Cue window, learning vs. expert, p=0.02; Outcome dendrites: Outcome window, naïve 

vs. expert, p=0.004. For all significant comparisons in the simulations, p<0.001. *p<0.05, **p<0.01, ***p<0.001 
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In the model, the feedforward basal inputs 𝐱bas onto L5 somata are fixed throughout training and do 

not need adjustment. For simplicity, we first assumed one go-texture (Go) neuron and one no-go-

texture (NoGo) neuron, which receive basal input in the touch window exclusively in go and no-go 

trials, respectively (pure-selectivity model). In addition, we presumed one tone-cue (Cue) neuron that 

receives basal input in the tone-cue window in all trials, and 200 distractor neurons that receive noisy 

random basal inputs (Supplementary Figure 12a; Methods and Supplementary Note 2). As the 

salience signals in the apical tufts develop, the somatic response of the Go neuron is amplified in Hit 

trials through dendritic gain modulation and associated to the lick action. Correspondingly, the NoGo 

neuron is amplified in CR trials and associated with not licking (Fig. 3c; Supplementary Fig. 13). Note 

that both 𝑤𝐺𝑜
ap

 and 𝑤𝑁𝑜𝐺𝑜
ap

, as well as 𝑤𝐶𝑢𝑒
ap

, increase during learning, because both texture stimuli and 

the tone-cue are relevant for the task and affect outcome prediction. In contrast, the apical weights of 

the task-irrelevant distractor neurons are reduced, lowering their somatic activities. As a hallmark of 

TD-learning and conditioning, the initial dendritic response to a reward signal is advanced in time so 

that after learning the response is already elicited by the presentation of the conditioned texture 

stimulus, and even earlier at the time of the conditioned auditory tone-cue (Fig. 3c,d). The conditioned 

salience signal 𝑠𝐶 = |∆𝑉̂|, driving the sensory dendrites of task-relevant neurons in the expert state, 

are interpreted as temporally advanced reward-prediction errors that highlight moments, at which 

relevant stimuli (texture, tone) are preceived and thus lead to an update of the state-value estimation 

𝑉̂ (Fig. 3d). Comparing the model dynamics across learning with our experimental findings, we find 

good agreement of the learning-related modulation of sensory and outcome dendrites (Fig. 3e).  

In addition to the pure-selectivity model, we also tested a more general mixed-selectivity model, in 

which basal inputs 𝐱bas provide mixed sensory inputs to the L5 somata, resulting in a distribution of 

go/no-go texture preference across the L5 population. This model also learned the task by  amplifying 

the activity of the most task-relevant neurons, i.e., those that received inputs biased to either go or 

no-go stimulus. As a result, their somatic texture selectivity was enhanced (Extended Fig. 14). Overall, 

we put forward a new framework for the computational role of apical tuft dendrites in learning, 

emphasizing the potential importance of adjusting dendritic gain modulation across the population 

such that at each salient time point the appropriate neurons are recruited. 

Inhibition of outcome-window activity impairs learning 

We hypothesized that the large signal in the outcome window in naïve mice (the dominant TD error 

component at this stage) might be essential for driving circuit adaptations and thus for learning. To 

assess whether the unconditioned salience signal conveyed via dendrites of S1→S2 L5 neurons is 

relevant for learning, we densely expressed eArchT3.0 in S1→S2 L5 neurons to optogenetically 

suppress apical dendritic activity during the outcome window (Fig. 4a). We validated the inhibitory 

effect of laser stimulation on eArchT3.0-expressing L5 neurons using extracellular recordings in 
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anesthetized mice: Direct surface illumination reduced but did not eliminate spontaneous multi-unit 

activity and generated a pronounced sink in the current source density (CSD) signal in superficial 

layers including L1 (Fig. 4b; Supplementary Fig. 15a). The effect of surface stimulation was 

comparable to superficial illumination targeted to L1 through an oblique optical fiber, whereas 

illumination targeted to deep layers nearly abolished both spontaneous and whisker-evoked spiking 

activity in L5 (Fig. 4c,d; Supplementary Fig. 15b,c).  

 

Fig. 4 | Optogenetic suppression of outcome-driven activity prevents learning. a, Pathway-specific optogenetic 

manipulation of S1→S2 L5 neurons using eArchT3.0. Bottom: Dense labeling of eArchT3.0 in L5 neurons (confocal image, 

coronal view, 100 µm). b, Schematic of multiple compartment optogenetic perturbation using three fiber optic cannulae with 

simultaneous electrode shank recording in isoflurane-anesthetized mice during whisker stimulation. Three different types of 

illumination were tested: surfaces illumination (as in the awake experiment), superficial illumination aimed a L1 and deep 

illumination at L5. c, Whisker stimulation evoked firing rate response of an example L5 unit that showed suppression for 

perturbation of different compartments (mean ± s.e.m.). d, Firing rate of L5 units with and without optogenetic manipulation 

according to fiber position (line: median, box: 25th and 75th percentile, whiskers: 5th and 95th percentile; 5 mW, 17 units, 

200 trials, 8 sessions, n = 4 mice, t-test *p<0.0025, ***p<0.001). e, Temporal profile of optogenetic inhibition during trials 

(top) and across training (bottom). f, Top: Optogenetic perturbation during a texture-discrimination task was carried out for 

1’800 trials. Learning curves of eArchT3.0-expressing mice (n = 5) and control mice (from GCaMP6f experiments, n = 8; 

and eYFP controls, n = 3)). Bottom: Computational model simulation of learning curves for unperturbed (grey, n = 10) and 

perturbed (green, n = 10) agents. For the perturbed agents, the apical dendritic activity was set to zero and the adaptation 

during the outcome window blocked for 1’800 trials g, Left: Average number of trials required to reach expert performance 

in unperturbed mice (Control), optogenetically perturbed eArchT3.0 mice (eArchT3.0), and for perturbed mice after 

subtraction of the 1’800 perturbed trials (Corrected; 1’150 ± 314, 3’019 ± 659, and 1’219 ± 659 trials, respectively; mean ± 

s.d.; p<0.001 for Perturbed vs. Control; p = 0.89 for Corrected vs. Control; Wilcoxon rank-sum test). Right: Average number 

of trials required to reach expert performance of simulated agents in the model under unperturbed conditions (Unperturbed), 

with perturbation (Perturbed), and for the perturbed agents after subtraction of the 1’800 perturbed trials (Corrected) (1’239 

± 176, 3’043 ± 168 and 1’243 ± 168 trials, respectively; mean ± s.d.; p<0.001 for Perturbed vs. Unperturbed; p = 0.88 for 

Corrected vs. Unperturbed; Wilcoxon rank-sum test).h, Synaptic strengthening of apical synapses mediating the conditioned 

saliency input in perturbed and unperturbed agents (mean ± s.e.m.; n=10).  
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These results indicate that at intermediate laser intensity (5 mW; Supplementary Fig. 15d,e) optical 

stimulation induced mainly apical inhibition without blocking somatic spikes, comparable to similar 

previous approaches13,16.  

Having verified the perturbation effect on L5 neuronal populations in the anesthetized condition, we 

applied 5-mW optogenetic inhibition during the 2-s outcome window in awake mice (n = 5) in every 

trial, starting in the naïve condition and continuing during texture discrimination training (Fig. 4e). We 

perpetuated this photoinhibition for 1’800 trials, which is about twice the average number of trials that 

mice normally required to reach expert performance. At the end of this long period of photoinhibition, 

none of the eArchT3.0-expressing mice had reached expert level (mean performance 62% ± 6.2%). 

After 1’800 trials, the optogenetic block was lifted, and only then eArchT3.0-expressing mice were 

able to improve their task performance to expert levels, with a time course comparable to mice 

expressing eYFP or GCaMP6f (Fig. 4f,g; Supplementary Fig. 15e). Licking and whisking behavior 

remained unaffected by the optogenetic perturbation (Supplementary Fig. 15f-i). These findings are 

consistent with our TD learning model, where blocking dendritic activity (𝐱ap = 0) in the outcome 

window for the first 1’800 trials prevented learning (Fig. 4f,g). Only after terminating this blockade, the 

trained agents were able to learn the task and to reach expert performance in a comparable number 

of trials as the optogenetically perturbed mice. The reason is that only after the end of the blockade, 

synaptic weights 𝑤𝑖
ap

 conveying the conditioned salience signal were plastically adjusted (Fig. 4h)  so 

that the appropriate subset of sensory branch signals 𝑑𝑘
sen could be strengthened and exert their 

modulatory effect on somatic activity. Taken together, our experimental and modeling results suggest 

that the unconditioned salience information inducing apical dendritic activity of S1→S2 neurons in the 

outcome window is essential for learning the new task.   

Discussion 

Here we discuss the role of apical dendrites in shaping neural activity patterns during learning, based 

on the results of our longitudinal study of dendritic tuft calcium signals in L5 pyramidal neurons. We 

link these results to a TD learning model that utilizes unsigned prediction errors, and we propose a 

general concept, in which the activities of task-relevant neurons are amplified through learned 

dendritic gain modulation. Such amplification may be instrumental for establishing and promoting 

appropriate signal flow through large-scale neural circuitry, tailored to highlight and make use of the 

information most salient to the animal. 

Besides widespread tuft activation events, we observed dendritic events localized to one or few 

branches, similar to several previous studies15,20,33,34, but contrasting other studies35,36 that reported 

highly correlated activity in soma and apical dendrites of L5 neurons. The reasons for these discrepant 

results are unclear, possibly reflecting differences in cortical region, neuronal subtype, behavioral 
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state, or task demands. The prevalence and relevance of local dendritic branch activity in L5 tufts in 

vivo thus warrants further investigation37.  

Despite the variability of dendritic signals, we identified two functional types of branch activity, 

distinguished by their timing during task trials and their distinct profiles of learning-related adaptation. 

We interpret these response types as reflecting converging input streams that convey two distinct 

types of salience information to the apical tufts. Individual branches are dominated by one or the other 

input type, possibly reflecting local connectivity including potential clustering of synaptic contacts38. 

We formalized the notion of salience processing and replicated our results in a TD learning model, in 

which unsigned TD error components reflecting unconditioned and conditioned salience are fed onto 

dendritic tuft branches (outcome and sensory branches, respectively). Dendritic responses to both 

unexpected random rewards and trial-associated rewards have been previously reported in L5 tufts 

of barrel cortex21. Reward prediction errors carrying unconditioned salience information may originate 

from various sources, including prefrontal areas linked to the midbrain dopaminergic system, as well 

as direct cholinergic39,40, serotonergic41 or noradrenergic42,43 modulatory afferents. Potential sources 

of conditioned salience information, on the other hand, include perirhinal cortex conveying stimulus-

outcome associations19,39, higher-order thalamic afferents44-47, posterior association areas conveying 

contextual or anticipatory information 19,48,49, and inputs from frontal premotor and motor areas14,50,51. 

Furthermore, areas of the salience network52 could be involved, such as anterior cingulate cortex, 

agranular insular cortex and mediodorsal (MD) thalamus, which all display projections to L1 in barrel 

cortex53.   

All these projections from various regions might affect L5 apical tuft dendrites directly or indirectly by 

synapsing onto local inhibitory interneurons. Notably, widespread reward-associated activation of 

vasoactive intestinal polypeptide(VIP)-expressing interneurons54 leads to disinhibition of L5 apical 

dendrites, likely opening windows of opportunities for other pathways to modulate dendritic activity in 

the outcome period. Likewise, stimulus-associated activation of L1 interneurons might be essential in 

gating and regulating the impact of long-range inputs on apical dendrite activation47,55,56. Generally, 

the learning-related occurrence of unconditioned responses before the conditioned response appears 

to happen in a widely distributed  manner57. In S1, dendritic response adaptations might involve local 

plasticity at L1 synapses (in tuft dendrites themselves or in surrounding interneurons) or plasticity in 

further upstream regions such as S231, perirhinal19, premotor51, or orbitofrontal58 cortices and other 

regions that might be involved in the formation of state-value representations. Fully dissecting the 

local and long-range circuitry involved in the learning-related adaptations of L5 neuronal function 

remains a paramount objective. 

The theoretical framework derived from our experimental data brings together three computational 

facets that have been associated with dendritic function for decades: gain modulation, prediction error 

signaling, and somato-dendritic conincidence detection. Gain modulation of neurons56, particularly via 
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dendritic activity22, is a powerful means to dynamically adjust a neuron’s output in the light of changing 

input. Here, we propose multiplicative gain control56 as a mechanism to amplify specific neuronal 

subsets that, in a given context, encode valuable information to solve a goal-directed task. The 

mechanism by which neurons are selected combines the other two  facets. The activation of distal 

apical dendrites of task-relevant neurons by learned salience signals that relate to TD error 

components opens time windows of opportunities, during which somatic activity can be amplified. 

Interestingly, the task relevance of a neuron 𝑖 turns out to be appropriately defined by the covariance 

of 𝑠𝐶  and 𝑥𝑖
som (see Supplementary Note 3), i.e., the covariance between the top-down salience 

signals conveyed via the apical dendrite and the somatic activity, highlighting the importance of 

dendro-somatic coupling and linking our idea to the notion of coincidence detection in apical 

dendrites8,59,60. The general concept behind this definition is: the more a neuron’s activity co-varies 

with the salience signals broadcasted via the apical tufts, the more likely it is to carry task-relevant 

information that can contribute to outcome prediction. Consequently, in the given context and task 

setting, such neurons with high apparent relevance should be engaged by dialing up their activity. 

Our photoinhibition experiments indicate that learning abilities are compromised when these 

mechanisms are suppressed in a relevant brain region.  

In summary, we discovered that task- and learning-related dynamics of L5 apical dendrites reflects 

unsigned TD error components. We started mapping mathematical terms of a learning theory to 

specific neuronal processes, which is a promising avenue to be followed in future studies. Such 

mapping may not only reveal principles of neural dynamics underlying learning but may also inspire 

new designs of artificial neural networks61.     
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Methods 

All experimental procedures were carried out in accordance with the guidelines of the Federal 

Veterinary Office of Switzerland and were approved by the Cantonal Veterinary Office in Zurich under 

license number 234/2018. 

Animals and preparations for chronic imaging. We used male and female adult 6-10 week old 

Rbp4-Cre transgenic mice (n = 8, Tg(Rbp4-cre)KL100Gsat/Mmucd, MGI:4367068, ref. 62,63). For 

surgical preparation, mice were anesthetized using isoflurane (1.5-2% in O2) and the body 

temperature was maintained at 37°C using a heating pad with rectal probe. After exposing the skull, 

a 4-mm diameter craniotomy was made above the left S1 barrel cortex and S2. Stereotactic injections 

of AAVretro-hSyn1-chI-FLEX-mCherry_2A_NLS_FLPo virus solution (6.3 x 1012 vg/ml, dilution 1:50) 

was injected into S2 (three injections à 210 nl; AP|ML|DV coordinates from bregma (in mm): -0.7|3.5|-

1, -1.2|4.1|-1.5, -1.3|4.5|-1.5). AAV-2.1-hSyn1-fio-GCaMP6f virus solution (1.8 x 1012 vg/ml) was 

injected into L5 of barrel cortex (three injections à 210 nl: -0.7|-3|-0.6, -1.1|-3|-0.5, -1.1|-2.4|-0.6). The 

craniotomy was sealed with a 4-mm glass cover slip and dental cement (Tetric EvoFlow). A light-

weight head-post was fixed on the skull using dental cement. For the 3 days following the surgery, 

animals were monitored and analgesics (Metacam, 5 mg/kg, s.c.) and antibiotics (Baytril, 10 mg/kg, 

s.c.) were administered. Animal handling began 5 days after surgery and the first imaging session 

took place >21 days after virus injection.  

Behavioral task and mouse training. The setup for the go/no-go texture discrimination task has 

been described previously4,64. Each trial started with the opening of the laser shutter (Thorlabs, 

SH05/M) followed after 1s by an auditory tone (two 2-kHz beeps of 100-ms duration with 50-ms 

interval). Then, either the rough or smooth texture (P100/P1200 sandpapers) was moved towards the 

whiskers on the right side of the animal’s snout. We presented the two texture types randomly but 

with no more than 3 repetitions. In expert mice, which typically show anticipatory whisking, the first 

texture-whisker touch typically occurs around 0.5 s before the texture stops64. After a 2-s stimulus 

presentation period the texture was retracted and an auditory tone (4 beeps of 4 kHz; 50-ms duration 

with 25-ms intervals) signalled the start of the 2-s response period. Based on this structure we divided 

the trial time in four windows: cue (1.1-2.3 s), touch (2.4-3.3 s), late touch (3.4-4.9 s) and outcome (5-

7 s). A water reward was given when the mouse licked in the outcome window after the presentation 

of the go texture (‘Hit’). The first lick during the outcome window triggered the feedback. Licks during 

the late-touch window were ignored. A white noise punishment was given for licking in the outcome 

window for the no-go texture (‘False alarm’, FA). When the mouse withheld licking after the 

presentation of the go texture (‘Miss’) or the no-go texture (‘Correct rejection’) neither reward nor 

punishment were given. In the first training session, the identities of go and no-go textures were 

randomly assigned to the animal and maintained for the whole experiment (go texture: P100 in 3 mice 

and P1200 in 5 mice). 

Animals were kept on a reversed light/dark cycle. After accustoming the mice to the experimenter, 

habituation to head-immobilization began. We increased head-restraining time with every training 

session, carrying out two session per day. Mice were water scheduled for behavioural training once 

they sat quietly for >2 min and were introduced to the experimental setup. Weight, health and water 

intake were monitored daily. During the first two sessions in the setup, mice only received water 

reward (~5 µl per repetition). In session 3 and 4 the go-texture presentation was introduced and an 

automatic water reward was given, to form an association between texture and reward. Once the mice 

were able to trigger the water reward autonomously, the no-go texture was introduced starting from 

presentation in 1% of the cases and gradually increasing to 50%. The first imaging session was 

scheduled when mice licked consistently for both the textures. Imaging sessions were carried out 
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once per day per animal and lasted as long as a mouse actively engaged in the task (63-209 trials 

per session). For the first 3-5 imaging sessions go and no-go textures were presented each in 50% 

of the trials. Thereafter, to facilitate learning, presentation of the no-go texture was repeated in trials 

following an error trial (false alarm or miss). This ‘repeat-incorrect’ strategy was accounted for in the 

calculation of behavioral performance by considering the occurrence of the go-texture in a sliding 

window of 5 trials. Mice learned to differentiate the textures and showed stable expert performance 

(>75% correct trails) after 12-18 sessions. The performance of each animal (correct response 

probability as a function of trial ID) was quantified by a state-space smoothing algorithm that provides 

a learning curve with confidence intervals65. The first expert trial and the last naïve trial were identified 

by an expectation maximization algorithm using a Gaussian state equation. Learning onset (i.e., the 

last naïve trial) was defined as the trial when the lower 95% confidence interval exceeded 50% correct 

responses. The first expert trial was defined as the trial, from which on onwards the performance of 

the animal exceeded chance level with 95% confidence. For analysis of the learning process of all 

mice, we aligned learning curves to the first expert trial and used a time window of 500 trials before 

and 150 trials after the first expert trial (trial ID -500 to 150).  

Recording of licking and whisking behavior. Using a 950-nm infrared LED, whisker motion was 

imaged during the trial at 40 Hz using a high-speed CMOS camera (A504k, Basler). The average 

whisking angle across all whiskers was analyzed from the videos using a whisker tracking software66. 

The whisker envelope was extracted as the difference between the maximum and minimum whisker 

angle using the MATLAB function envelope. The estimated time point of the first touch between 

whisker and texture was obtained by calculating the time of the average whisker envelope maximum 

within the pre-touch and touch window across one session. Licking was estimated based on the event 

rate from the capacitive lick sensor sampled at 100 Hz. The lick rate was calculated based on the 

number of lick events in a 200-ms sliding window, assuming that an average lick event lasts 4 ms. 

Licking and whisking onsets in Hit trials were determined using the MATLAB function findechangepts 

detecting changes in the root mean square level of the signal. Unrewarded licks occurred prior to the 

outcome window (1s to 4s in trial time), while rewarded licks occurred within the first half the outcome 

window (4.8s to 6s). Active touch related whisking onsets occurred during the sensory window (2.3s 

- 3.5s), while free whisking onsets occurred before this period (1s to 2s). 

Two-photon calcium imaging. In vivo awake calcium imaging was performed using a custom-built 

two-photon microscope equipped with a Ti:sapphire laser system (Chameleon Ultra, Coherent), a 

water-immersion objective (CFI LWD 16X/, 0.8 NA; Olympus), a custom-built scanner unit with a 4-

kHz resonance scan mirror (CRS 4KHz, Cambridge Technology) and a galvometric mirror (6220H, 

Cambridge Technology), a Pockel's Cell (Model 350-80-LA-02, Conoptics, Danbury, CT) and a hybrid-

photodetector (HPDs, R11322U-40 MOD, Hamamatsu). The microscope was controlled by the 

custom-written software Scope31 (http://sourceforge.net). An electrically tunable lens (ETL; Optotune 

EL-10-30-TC, Optotune AG, Zurich, CH; with an plano-concave offset lens, f = -100 mm, Qioptiq) was 

imaged on the scan mirrors using a 1:1 telescope of f= 100 mm lenses (AC254-100-B-ML, Thorlabs). 

For initial identification of GCaMP6f-positive neurons, a volume stack was acquired using 800-nm 

excitation and a green emission filter (510 ± 42 nm bandpass). For calcium imaging, GCaMP6f was 

excited at 920 nm. Four imaging planes were identified per animal, spanning from close to the pia 

mater to below the nexus of L5 tufts (approx. -30 µm to -370 µm). Plane hopping was implemented 

with the ETL 67 and images were acquired at 10 Hz volume rate with 508x168 pixel resolution resulting 

in a 230 µm x 230 µm field of view. Laser power was adjusted per plane ranging from 10 to 65 mW 

under the objective. Single trials of >7-s duration were recorded with 4-s inter-trial intervals.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 5, 2024. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

http://sourceforge.net/projects/rkscope
https://doi.org/10.1101/2021.12.28.474360


20 

 

Optogenetic silencing. To transiently suppress apical activity of L5 pyramidal neurons in barrel 

cortex during reward delivery (in the outcome window), we expressed the outward proton pump 

eArchT3.068 in S1→S2 L5 neurons using the same surgical procedure of virus injection and window 

implantation as described for the calcium imaging experiments. In five mice, we made three injections 

of undiluted AAVretro-hSyn1-chI-FLEX-mCherry_2A_NLS_FLPo virus solution (6.3 x 1012 vg/ml) into 

S2 and three injections of AAV-1/2-hSyn-chl-dFRT-eArchT3.0_EYFP-dFRT virus solution (5.3 x 1012 

vg/ml) in S1 barrel cortex (coordinates and volumes as described above). In three additional mice we 

induced expression of eYFP (AAV5-EF1a-fDIO-EYFP_WPRE, 4.9 x 1012 vg/ml) instead of eArchT3.0 

for control. After the implantation of the glass window, a ferrule holding an optical fiber (910 µm) was 

positioned and secured in place with dental cement above the window centered over barrel cortex. 

Animal handling and training was carried out as described above. Once mice reliably licked for water 

in the experimental setup, 561-nm green laser light (5 mW, CW laser Coherent OBIS-561-50 LS) was 

delivered through the optical fiber in 100% of the trials. The perturbation only occurred during the 

outcome window of the trial, lasting 2.4 s (4.8 - 7.2 s in trial time). After 1800 trials of laser perturbation, 

optogenetic silencing was stopped. The optical fiber transmitting the laser light to the behavioral setup 

was detached from the ferrule placed above the craniotomy. This change preserved similar light 

conditions and allowed the mouse to behave and learn without the optogenetic manipulation. 

Experiments were stopped after 8 weeks of experimentation in accordance with our animal licence. 

For mice that did not reach expert performance levels, but performed above chance levels at this 

time, the last recorded trial was considered as their first expert trial. Licking behavior was constantly 

recorded during the whole experiment. To determine the effect of optogenetic perturbation on 

whisking behavior, we connected the optical fiber to the ferrule in expert mice and applied laser 

illumination in 50% of trials. We analyzed whisking behavior as described above and compared the 

conditions with and without illumination.  

In vivo electrophysiological recordings. To validate the effect of optogenetic perturbation we 

performed acute in vivo recordings in lightly anesthetized mice (n = 3) expressing eArchT3.0 

selectively in S1→S2 L5 neurons. At the start of validation experiments, animals were anesthetised 

with isoflurane (2% for induction and <1.5% during recording), and their body temperature was 

maintained at 37°C using a heating pad. A small craniotomy (<1 mm diameter) was performed over 

the area of virus injection in barrel cortex and the brain was covered with silicon oil. A silver wire was 

placed in contact with the cerebrospinal fluid through a small (0.5 mm) trepanation over the cerebellum 

to serve as reference electrode. A silicon probe (Atlas Neurotechnologies, 32-contact linear array with 

50 µm inter-contact spacing) was inserted into the left cortical hemisphere. The top-most electrode 

was left in contact with the surface of the brain under visual guidance, to ensure that the probe covered 

the entire cortical column including superficial L1. We used two approaches for optogenetic light 

illumination. In a first set of experiments, a fiber-optic cannula was positioned to deliver laser light 

(561 nm, 5 mW) to the surface of the brain just adjacent to the silicon probe, but not inserted into the 

brain, comparable to the awake in vivo experiments. In a second set of experiments, we opened the 

skull lateral to barrel cortex and inserted two thin optical fibers (400 µm) into the brain parallel to the 

brain surface, so that the fiber tips were positioned in cortical L1 and L5. After positioning of the silicon 

probe and cannula, the preparation was left for 30 min to allow the brain and electrode to stabilise. 

After stabilisation, the broadband voltage was amplified and digitally sampled at a rate of 30 kHz using 

a commercial extracellular recording system (RHD2000, Intan Technologies). Spontaneous activity 

was recorded over 1-1.5h long recording sessions divided into trials (7-s duration, laser on for 2 s) 

separated by 1-s inter-trial intervals, mimicking the awake optogenetic experiments. The raw voltage 

traces were processed offline using fourth-order Butterworth filters to separate the local field potential 

(< 400 Hz lowpass filter) and the multi-unit activity (MUA; bandpass filter 0.46-6 kHz). Subsequently, 
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the local field potential was used to compute the current source density to localize currents arising 

from the optogenetic stimulation. The high-pass data was thresholded at 5.5 times the standard 

deviation across the recording session and the numbers of spikes in windows of interest were 

counted. To combine data across mice, the activity at sites with clear MUA was expressed in percent 

of the baseline value, i.e. the average spike rate during the period without laser illumination. 

Cleared tissue light-sheet microscopy. Two mice were injected with retrograde AAVretro-hSyn1-

chI-FLEX-mCherry_2A_NLS_FLPo virus in S2 and AAV5-EF1a-fDIO-EYFP_WPRE virus in S1 (for 

details see above) and their brains were cleared using the CLARITY protocol69,70. In brief, after 4 

weeks of expression, mice were perfused and the brains post-fixed for 48 hours in a hydrogel solution 

(1% paraformaldehyde, 4% acrylamide, 0.05% bis-acrylamide, 0.25% VA044) before the hydrogel 

polymerization was induced at 37°C. Then the brains were placed in 40 ml of 8% SDS at room 

temperature (RT) for approx. 25 days. The brains were put into a refractive index matching solution 

(RIMS) and equilibrated for 1 day before imaging.  

We visualized sparsely GCaMP6f-labeled S1→S2 L5 neurons after clearing brain hemispheres (n = 

2) with a custom iDISCO protocol71. After 4 weeks of expression, mice were perfused and the brains 

post-fixed in 4% PFA in PBS for 4.5 hours at 4°C, shaking at 40 rpm. Brain hemispheres were washed 

in PBS for 3 days at RT and 40 rpm, with daily solution exchange. Samples were dehydrated in serial 

incubations of 20%, 40%, 60%, 80% methanol (MeOH) in ddH2O, followed by 2 times 100% MeOH, 

each for 1 hour at RT and 40 rpm. Pre-clearing was performed in 33% MeOH in dichloromethane 

(DCM) overnight (o.n.) at RT and 40 rpm. After 2 times washing in 100% MeOH each for 1 hour at 

RT and then 4°C at 40 rpm, bleaching was performed in 5% hydrogen peroxide in MeOH for 20 hours 

at 4°C and 40 rpm. Samples were rehydrated in serial incubations of 80%, 60%, 40%, and 20% MeOH 

in in ddH2O, followed by PBS, each for 1 hour at RT and 40 rpm. Permeabilization was performed by 

incubating the mouse hemispheres 2 times in 0.2% TritonX-100 in PBS, each for 1 hour at RT and 40 

rpm, followed by incubation in 0.2% TritonX-100 + 10% dimethyl sulfoxide (DMSO) + 2.3% glycine + 

0.1% sodium azide (NaN3) in PBS for 3 days at 37°C and 65 rpm. Blocking was performed in 0.2% 

Tween-20 + 0.1% heparine (10 mg/ml) + 5% DMSO + 6% donkey serum in PBS for 2 days at 37°C 

and 65 rpm. Samples were stained gradually with primary polyclonal chicken-anti-GFP antibody (Aves 

Labs, GFP-1020) and secondary donkey-anti-chicken-AlexaFluor488 antibody (Jackson 

ImmunoResearch, 703-545-155) 1:400 in 0.2% Tween-20 + 0.1% heparine + 5% DMSO + 0.1% NaN3 

in PBS (staining buffer) in a total volume of 1.5 ml per sample every week for 4 weeks at 37°C and 

65 rpm. Washing steps were performed in staining buffer 5 times each for 1 hour, and then for 2 days 

at RT and 40 rpm. Clearing was started by dehydrating the samples in serial MeOH incubations as 

described above. Delipidation was performed in 33% MeOH in DCM o.n. at RT and 40 rpm, followed 

by 2 times 100% DCM each for 30 minutes at RT and 40 rpm. Refractive index (RI) matching was 

achieved in dibenzyl ether (DBE, RI = 1.56) for 4 hours at RT.  

3D stacks of cleared brains and hemispheres were acquired using a mesoSPIM light-sheet 

microscope72 (www.mesospim.org). Imaging data were post-processed using custom-written routines 

in MATLAB. To visualize neurons, local contrast enhancement was performed per slice by subtracting 

a Gaussian-smoothed version of the slice (4σ). Barrels were visible in the green autofluorescence 

channel. An anatomical barrel map was fitted to the barrel autofluorescence using the MATLAB 

functions cpselect and fitgotrans. 3D volume projection was performed using Imaris (9.8.0, Oxford 

Instruments). 

Confocal histology. After the last awake imaging session mice were administered a lethal dose of 

pentobarbital (Ekonarcon, Streuli) and transcardially perfused with sterile NaCl (0.9%) followed by 4% 

paraformaldehyde (PFA, 0.1 M phosphate buffer, pH 7.4). From 100-µm thick coronal brain slices we 
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acquired histological images with a confocal laser-scanning microscope (Olympus FV1000). Coronal 

sections were registered to Paxinos and Franklin’s mouse brain atlas using manually set landmarks 

using cpselect (MATLAB) and aligning the atlas via fitgeotrans (MATLAB). 

Morphological reconstructions. Anatomical two-photon image stacks of all fields of view were 

acquired before behavioral training using the two-photon microscope with 800-nm laser excitation. 3D 

reconstructions of imaged dendritic tufts were obtained using the semi-manual interpolation option of 

the VolumeSegmenter app in MATLAB. Tuft membership was determined based on the 

morphological stacks as well as on high correlation of calcium signals. In 42 neurons, the trunk could 

be clearly identified together with its corresponding daughter tuft branches. The comparison of 

functional class within dendritic tufts as well as the LE/GE analysis were performed on this subset of 

neurons.    

Preprocessing and visualization of calcium imaging data.  Motion correction of the acquired 

movies of GCaMP6f fluorescence was carried out by a custom-written Python pipeline using the 

NoRMCorre algorithm for non-rigid artefact correction provided by CaImAn73. Single non-overlapping 

dendritic branches were identified and regions of interest (ROIs) were defined manually for each 

session. A consistent nomenclature was used to identify the same dendritic branches over 

consecutive sessions. If multiple ROIs along the same branch were identified, only the ROI closest to 

the trunk was used for further analysis. Calcium indicator fluorescence signals were extracted using 

custom software routines written in MATLAB (Mathworks). Background fluorescence was estimated 

in a background ROI as the bottom 1st percentile fluorescence signal across the entire session and 

subtracted before calculating the relative percentage change of fluorescence from baseline ΔF/F = 

(F-F0)/F0. Baseline fluorescence F0 was computed as 51st percentile of the fluorescence signal in a 4-

s sliding window. ΔF/F traces were smoothed with a 5-point 1st-order Savitsky-Golay filter. Upon visual 

inspection, we manually excluded calcium traces with obvious artefacts such as motion-induced 

artefacts, light reflections from the texture, or non-physiological calcium traces. All remaining data 

were visualized using an Euclidian-distance based UMAP embedding (UMAP embedding 1; 

Supplementary Fig. 6) with a neighborhood size of 100 data points in the high-dimensional space. 

For further analyses, detectable transients were defined as fluorescence signals that deviated from 

baseline noise by >5.5 standard deviations. Noise levels per ROI were determined as the median of 

the absolute value of the first derivative of the concatenated ΔF/F trace of one session. The set of 

trials with detectable F/F transients was visualized using a correlation metric-based UMAP 

embedding (UMAP embedding 2) and a neighborhood size of 30 data points in the high-dimensional 

space. Analysis and data exploration was carried out using dataspace30 

(https://github.com/skollmor/dspace) and custom-written MATLAB code. 

To determine the onsets of calcium transients, we identified the highest peak in a given trial (findpeaks 

MATLAB function; 1-s minimal distance between peaks and >25% ΔF/F peak prominence). Local 

maxima were not included in further analysis. For the calcium transient with maximal peak, the onset 

time point was defined as the minimum of the first derivative of the ΔF/F trace up to 1 s prior to the 

detected peak. Transients with their peak position within the start window (0-1 s of trial time) were not 

considered as their onset likely occurred during the inter-trial interval.  

Functional co-evolution of dendritic signals and transformation clustering. To assess learning-

related functional changes of trial-related calcium traces in individual dendritic branches or trunk ROIs 

we employed the custom-developed approach of “transformation clustering” that is inspired by earlier 

work using nearest neighbour graphs to understand high dimensional data30. The dimensionality of 

the raw ΔF/F trace vectors (70 frames) was reduced to 12 dimensions using multi-dimensional scaling 

(MDS). Transformation clustering exclusively used this 12-dimensional representation of ΔF/F traces. 
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It is independent from the dimensionality-reduced UMAP embedding, which is employed to visualize 

the data set. Functional changes across the learning time course in one dendritic branch were 

compared to the changes of any other dendritic branch in our dataset as follows:  Let 𝑑 and 𝑑’ denote 

a pair of dendritic ROIs with trial responses 𝑥𝑖
𝑑 and 𝑥𝑖

𝑑′
∈ ℝ70 (7-s recording at 10 Hz), where 𝑖 denotes 

the index of the trial (the trial ID) in which the response was recorded. Note that many trials contain 

no detectable transients (as defined above). Let 𝑖1, … , 𝑖𝑘 denote the indices of the trials in which 

dendritic ROI 𝑑 shows a detectable transient. Let 𝑁𝑁𝑘(𝑑,  𝑖,  𝑑′) denote the set of 𝑘 nearest neighbours 

of the trial response 𝑥𝑖
𝑑 among all responses 𝑥𝑖

𝑑′
 for dendritic ROI 𝑑′ that show detectable transients. 

Let 𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖,  𝑑′) denote the set of trial indices of the nearest neighbours of the trial response 𝑥𝑖

𝑑 

among the activations for ROI 𝑑′: 

𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖,  𝑑′) = {𝑗 | xj

d′  

∈ 𝑁𝑁𝑘(𝑑,  𝑖,  𝑑′)}                                              (1) 

Finally, let < 𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖,  𝑑′) > denote the average of those trial indices. We define the similarity of 𝑑 

and 𝑑′ as the correlation coefficient between the two vectors [𝑖1, … , 𝑖𝑘] and [< 𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖1,  𝑑′) >, … , <

𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖𝑘 ,  𝑑′) >]. We refer to this correlation coefficient as 𝑇𝑐𝑐𝑑𝑑′ (transformation correlation 

coefficient). To assess significance of the correlation, we compared the actual 𝑇𝑐𝑐𝑑𝑑′  to a null 

hypothesis derived by shuffling trial IDs for dendritic ROI d’. Shuffling removes the long-term temporal 

relationship between ROIs 𝑑 and 𝑑′. We define the corrected transformation correlation coefficient, 

𝐶𝑇𝑑𝑑′, as the inverse percentile of 𝑇𝑐𝑐𝑑𝑑′ with respect to the null hypothesis distribution generated by 

many shuffle iterations (e.g. 1000).   

Let CT denote the square matrix of corrected transformation correlation coefficients for all pairs of 

dendritic ROIs d and d’. We compute a symmetric dissimilarity matrix, 𝐃, through 𝐃 =  −(𝐂𝐓 + 𝐂𝐓T), 

where 𝐂𝐓T denotes the matrix transpose of 𝐂𝐓. We applied hierarchical link (HL) clustering to extract 

transformation clusters. We achieved comparable results using k-means clustering after applying 

multidimensional scaling to the dissimilarity matrix 𝐃. Additionally, we employed fuzzy c-means 

clustering to obtain a gradual measure of how likely a dendrite belongs to one of the two binary 

clusters assigned by HL. For fuzzy c-clustering we used an exponent for the partition matrix of 1.3 to 

reduce overlap between the two clusters and qualitatively replicate the HL clustering results. 

Note that only dendritic ROIs with more than 40 F/F traces with detectable calcium transients 

spanning a range of more than 500 trial IDs were included in the initial transformation clustering 

analysis. The results from this initial clustering were greedily expanded in order to assign cluster IDs 

also to dendritic branches and apical trunks that had only 6-39 trials with detectable calcium transients 

(independent of the range of recorded trial IDs). For these dendritic ROIs we calculated corrected 

transformation correlation coefficients with all other previously classified dendritic ROIs. The 5 

previously classified ROIs with highest coefficients values (corresponding to the smallest 

dissimilarities) were selected and the predominant cluster ID of this set was as assigned to the 

unclassified ROI. 

Dendritic event detection. For every tuft and trial, we summed F/F for all tuft ROIs and identified 

candidate events as local maxima separated by at least 2 s (findpeaks function, MATLAB). For each 

candidate event we generated a F/F heatmap for a 2-s window around the detected peak (matrix 

with ROIs as rows and 20 F/F time points as columns), representing the activity of trunk and tuft 

branches in individual L5 neurons. For identification of local events we defined two metrics. First, we 

defined trunk-tuft ‘co-activity’ as the correlation of the F/F traces in the trunk and the tuft branch 

tuftmax with the highest F/F amplitude (defined as min-to-max range). Second, we defined ‘apicality’ 
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as 𝑙𝑜𝑔2(
range(𝑡𝑢𝑓𝑡𝑚𝑎𝑥)

range (𝑡𝑟𝑢𝑛𝑘)
). With these definitions, local events had to fulfil three criteria: (1) the maximum 

z-scored F/F for at least one ROI exceeds 2 (z-scoring is performed with respect to all trials recorded 

for this ROI); (2) co-activity is negative or non-significant (p > 0.05, Pearson’s correlation, MATLAB); 

and (3) apicality is larger than 2, i.e., the signal range of the maximal tuft branch activity is at least 

four times higher than in the trunk.  

Decoder discrimination analysis. We trained three types of linear support vector machine (SVM) 

decoders from different trial types: Hit vs. CR (different textures and actions), Hit vs. FA (different 

textures, same actions), and CR vs. FA (same textures, different actions). For each trial type 

combination, decoders were trained using the pooled activity from either sensory or outcome window, 

using either whole-tuft activity or single dendrite activity. A separate decoder was trained for each 

imaging session. For each session, we randomly divided all the matched pairing trials into 5 subsets. 

We trained 5 decoders by excluding one subset at one time, therefore each decoder was trained on 

90% of the training set. To avoid overfitting, we regularized the SVM coefficients with ridge (L2) 

penalty. The regularization term was cross-validated in a log space of 10 parameters from 10-5 to 

101. To avoid overfitting due to unbalanced class number, we also implemented a misclassification 

cost that is inversely correlated with the total number of each class. To evaluate the decoder 

performance, the ROC (receiver operating characteristic) curve and the AUC (area under curve) were 

calculated. For null distribution, we randomly permuted the neuron indices in the activity matrix, and 

applied the trained decoders to obtain shuffled AUC values. We then tested the AUC from real data 

against 5% or 95% quantiles of the shuffled distributions. 

TD error-based computational model. We replicated our experimental results in a temporal 

difference (TD) reinforcement learning model. In brief, an estimator 𝑉̂ of the state-value function 𝑉 

was learned using the TD error5 

𝛿𝑡
𝑇𝐷 = 𝑅𝑡+1 + 𝛾𝑉̂𝑡+1(𝑆𝑡+1) − 𝑉̂𝑡(𝑆𝑡) = 𝑅𝑡+1 − 𝑅̂𝑡+1 + 𝛾Δ𝑉̂𝑡+1

𝑆     (2) 

where 𝑅𝑡+1 is the reward outcome at time 𝑡 + 1, 𝑆𝑡 the state at time 𝑡, −𝑅̂𝑡 represents the reset in 𝑉̂ 

when an outcome (good or bad) is expected, Δ𝑉̂𝑡+1
𝑆  represents the change in state-value estimation 

associated with the state change from 𝑆𝑡 to 𝑆𝑡+1, and 𝛾 𝜖 [0,1] is a discounting parameter for future 

rewards (in our model we presumed 𝛾 = 1, i.e., no discounting; for completeness we include it our 

desription). ). The derivation for this formulation of the TD error is described in the Supplementary 

Note 1. Our model postulates that apical dendrites convey salience information to the neurons to 

modulate their somatic output activity and steer behavior according to the animal’s sensory 

experience and needs. First, we consider unconditioned salience 𝑠𝑈 as the absolute value of 

unexpected outcome, i.e.,  

𝑠𝑡
𝑈 = |𝑅𝑡 − 𝑅̂𝑡|        (3) 

because only the difference between the actual reward 𝑅𝑡 at time 𝑡 and the estimated (expected) 

reward 𝑅̂𝑡 is informative for the animal (variables with a hat indicate model estimations). Initially, when 

the outcome is entirely unexpected, 𝑠𝑈 is large; once the task has been learned and the outcome can 

be predicted, this term approaches zero.  

Second, we assign salience to any sensory stimulus that is evaluated to be task-relevant. If a stimulus 

bears predictive power for future outcome, the perception of this stimulus will also impact the state-

value estimation 𝑉̂. We define the conditioned salience 𝑠𝐶  that develops during learning as the 

absolute value of the change Δ𝑉̂𝑡 in state-value function estimation when moving from 𝑡 − 1 to 𝑡: 

𝑠𝑡
𝐶 =  |Δ𝑉̂𝑡| = |𝛾𝑉̂𝑡(𝑆𝑡) − 𝑉̂𝑡−1(𝑆𝑡−1)| = |−𝑅̂𝑡 +  𝛾Δ𝑉̂𝑡

𝑆|    (4) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 5, 2024. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474360


25 

 

Both variables 𝑠𝑈 and 𝑠𝐶  are unsigned terms that relate to components of the classical TD error (see 

Supplementary Note 1 for a detailed derivation).  

We implemented these ideas in a network model of rate-based multi-compartment neurons, imposing 

the two types of salience signals on apical dendritic compartments (Fig. 3b). We designed the 

simulation to represent a population of L5 pyramidal neurons, with each neuron modeled as three 

compartments: the soma and two apical dendritic branches: one outcome branch receiving  

unconditioned salience and one sensory branch receiving conditioned salience information. The 

somata received bottom-up sensory stimulation via basal inputs, and their activities were gain-

modulated by the apical dendrite activity. Sensory stimuli were represented by binary variables that 

included the mutually exclusive go and no-go texture stimuli (occuring with 50% probability each and 

with fixed timing in the texture window), the auditory cue stimulus occurring in each trial in the cue 

window, and additional distractor stimuli, for which variable probabilities of activation were preset and, 

if they became active, the activation time (once during each trial) was uniformly drawn for each trial. 

Each simulated trial consisted of 18 time bins (4 Hz sampling) starting with one time bin before the 

tone-cue, covering cue period (1 s), touch period (1 s), and late-touch period (2 s), and ending with 

one outcome time bin. In the pure-selectivity model, the bottom-up basal inputs 𝐱bas were connected 

one-to-one to the L5 somata, producing one go-texture-responsive (Go) neuron, one no-go-texture-

responsive (NoGo) neuron, and one tone-cue-responsive (Cue) neuron. In addition, we generated 

200 distractor neurons whose activities were randomly assigned according to Bernoulli distributions 

(Supplementary Fig. 12a). We also explored a mixed-selectivity model, in which the input stimuli for 

go-texture, no-go-texture, tone-cue and 14 distractors were probabilistically connected to the somata 

of the L5 neurons (Supplementary Fig. 14a). In both the pure-selectivty and the mixed-selectivity 

model, the bottom-up sensory activation pattern remained fixed throughout the entire simulation (see 

Supplementary Note 2 for further details).  

For each neuron 𝑖, the activity of the apical dendritic compartment was modeled as the sum of 

outcome and sensory branch activity 

𝑥𝑖
ap

= 𝑑𝑖
out + 𝑑𝑖

sen         (5) 

This dendritic activity affected the somatic activities via multiplicative gain modulation:  

 𝑥𝑖
som = 𝑔𝑖 𝑥𝑖

bas        (6) 

 𝑔𝑖 = {
1 + (𝑔max − 1) ⋅ 𝑥𝑖

ap
     

𝑔max   

         if 0 ≤ 𝑥𝑖
ap

≤ 1

if 𝑥𝑖
ap

> 1
    (7) 

where we chose 𝑔max = 10. Whereas the unconditioned salience input to the outcome branches was 

uniform across all neurons, individual neurons learned to adapt the sensitivity of their sensory branch 

to the conditioned salience input by adjusting the input weights 𝑤𝑖
ap

. Effectively, this framework learns 

to amplify the apical gain of task-relevant neurons with 𝑠𝐶 = |Δ𝑉̂𝑡|, i.e., in time windows during which 

relevant information for outcome prediction is available and the state-value estimator 𝑉̂ thus is 

updated.  

To simulate the optogenetic inhibition experiment, we perturbed the model neurons for 1’800 trials by 

setting the apical dendritic activity 𝐱ap to zero during the outcome window. For further details of the 

computational theory and the model implementation see Supplementary Notes. 

The code reproducing the simulations and visualisations for the computational model can be found at 

https://github.com/HelmchenLabSoftware/td_dendrites.  
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Supplementary Figures 

 
 

Supplementary Fig. 1 | Histological characterization of imaged S1→S2 L5 pyramidal neurons. a, Coronal confocal 

overview image of GCAMP6f-labeled L5 pyramidal neurons in barrel cortex (green) and retrogradely-labeled mCherry-

tagged neurons (red) with projections to S2. b, Maximum-intensity projection of a confocal image stack of sparsely labeled 

L5 neurons expressing GCaMP6f in S1 barrel cortex (150 m slice). Note that most apical dendrites were cut in this slice 

preparation. c, Visualization of the location of sparsely-labeled GCaMP6f-expressing L5 neurons in barrel cortex from an 

iDISCO-cleared hemisphere. Top: Dorsal view of L5 soma location in barrel cortex, with barrel map overlaid according to L4 

autofluorescence. Bottom: Sagittal view of L5 neurons in barrel cortex along the A/P axis. Note, the maximum-intensity 

projection of GCaMP6f-expressing neurons was calculated across the whole of barrel cortex (1.3 mm slice) whereas the 

barrel map outline was derived from a reduced stack (210 m slice) as visualized in the schematic above (red strip). 
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Supplementary Fig. 2 | Changes of behavioral variables during learning. a, Example traces of lick rate, whisking 

envelope, and ΔF/F traces of six example trials aligned to trial start. b, Average whisking envelope in naïve and expert mice 

split by trial type (524 naïve Hit, 380 expert Hit, 181 naïve CR, 295 expert CR, 861 naïve FA and 191 expert FA trials, 8 

mice, mean ± s.e.m.). The last naïve and the first expert trial per mouse were determined using a state-space model. c, 

Average lick rate in naïve and expert mice split by trial type (same number for trials as in b); 8 mice, mean ± s.e.m.). d,  

Average ΔF/F traces around licking onsets (±1 s) for rewarded and unrewarded licks (left) and around whisking onsets for 

free whisking and active touch whisking in naïve, learning, and expert condition (right) (Hit trials, mean ± s.e.m.) e, Mean 

correlation of lick rate and dendritic ΔF/F traces (top) and of whisking envelope amplitude and dendritic ΔF/F traces (bottom) 

across learning. Black line and grey-shaded area indicate mean ± s.d. across all ROIs.  
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Supplementary Fig. 3 | Longitudinal calcium imaging of dendritic activity. a, Example two-photon calcium imaging with 

four imaging planes for three imaging sessions spread over 5 days. The trunks (T) and tuft dendrites (D) of several neurons 

are shown in different colors. ROIs and respective calcium transients are display for four example trials per session. Two 

local events (LE) on day 3 are highlighted. b, Distribution of calcium transient amplitudes per dendrite (calculated as the 95th 

percentile of ΔF/F traces with detectable calcium transients in 50 randomly selected trials per day) across five consecutive 

imaging days. Colored lines indicate average transient amplitude per imaging plane. c, Distribution of the number of trials 

with detectable calcium transients per dendrite. d, Distribution of noise levels per ROI calculated based on 50 randomly 

selected trials per day. 
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Supplementary Fig. 4 | Apical tufts display diverse ΔF/F activity patterns across learning. a, Overview of events 

detected in example tuft 1 colored by event type. b, UMAP embedding of all events recorded in example tuft 1 colored by 

trial ID. Surrounding heatmaps display averaged normalized ΔF/F tuft activity patterns across trail time from selected 

neighborhoods. Event-centered windows for data analysis are shown by white lines. 
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Supplementary Fig. 5 | Mapping of various features of trial-related dendritic calcium signals in the UMAP space. a, 

UMAP embedding of all ΔF/F traces with detectable calcium transient onsets within trials colored by mouse ID (left), tuft ID 

(middle), and dendrite ID (right; 22’027 data points, NN=30). b, UMAP embedding separated by mice and color-coded by 

transient onset time. Value in brackets indicate the number of data points (dendritic ΔF/F traces with detectable transient 

onsets from single trials) obtained from each mouse. c, UMAP embedding of ΔF/F traces of sensory and reward class 

colored according to their cluster ID. Note that trials of both classes are inter-mixed within the UMAP embedding. d, Clusters 

distinguish themselves by their temporal profile of learning-related changes. UMAP embedding of ΔF/F traces in dendrites 

of sensory (left) and outcome (right) cluster, colored according to smoothed trial ID. The arrows indicate learning-related 

trajectories of the centre of mass in the 2D UMAP plot (25-trials binning). 
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Supplementary Fig. 6 | Processing pipeline for dendritic ΔF/F data. a, Flow chart for ΔF/F data processing. b, Number 

of traces, neurons and dendritic branches per processing step. Note not for every neuron a trunk was recorded. Color in (3) 

and (5) are based on transient onset times (4b).  
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Supplementary Fig. 7 | Average ΔF/F traces per trial type and functional cluster. a, Average ΔF/F traces across trial 

types for dendritic branches belonging to reward (left) and sensory (right) class. Averages include only trials of tuft branches 

and apical trunks with a detectable calcium transient onset and are shown separately for the naïve (black) and expert (green) 

condition. Note that average ΔF/F traces reflect both transient abundance and transient amplitudes, while transient onset 

probabilities shown in Fig. 2c,d do not consider amplitudes. (Outcome-driven dendrites: 1452 naïve Hit, 964 expert Hit, 304 

naïve CR, 597 expert CR, 1472 naïve FA, 402 expert FA trails; Sensory-driven dendrites: 1383 naïve Hit, 1671 expert Hit, 

566 naïve CR, 1283 expert CR,2377 naïve FA, 714 expert FA trails; n = 8 mice; mean ± s.e.m).  
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Supplementary Fig. 8 | Fuzzy c-means clustering describes a continuum of dendritic cluster identities. a, 

Relationship between silhouette values and cluster numbers obtained as an alternative clustering approach for 

transformation clustering using k-means clustering. Black line indicates mean silhouette value (k = 2-10 clusters, 100 

repetitions each). b, Comparison of hierarchical link clustering results and fuzzy c-means clustering results for two clusters 

on the first 12 dimensions of multi-dimensional scaling per dendrite. c, Top: Relationship of fuzzy c-means clustering 

probabilities for the sensory- and the outcome-driven cluster, colored according to hierarchal link cluster assignment. Bottom: 

Distribution of sensory cluster probability across sensory and outcome branch polulation. d, Top: Distribution of fuzzy c-

mean clustering probabilities for the sensory-driven cluster across all dendrites. Bottom: Distribution of calcium transient 

onset probability across trial time in the first, middle and last third of the fuzzy c-means cluster probability distribution. 
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Supplementary Fig. 9 | ΔF/F activity changes are distinct in single branches belonging to the same tuft. a, 

Reconstruction of a sensory cluster-dominated example tuft. Single branches are colored based on fuzzy clustering results. 

Respective heatmaps display normalized ΔF/F activity per branch across learning. Heatmaps include all trials with a 

detectable calcium transient in the trunk ROI (107 trials). Averaged ΔF/F traces across trial time are displayed underneath 

the heatmaps (mean ±   s.e.m.). b, Reconstruction, heatmaps and averaged ΔF/F traces of an outcome cluster-dominated 

example tuft (112 trials).  
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Supplementary Fig. 10 | Morphological reconstructions of imaged dendritic tufts and their functional composition. 

a, Fraction of apical branches per class across imaging planes. b, Number of branches per functional class per tuft (n = 42). 

Dendrites that were not assigned to a class due to insufficient data point are shown in black. c, Absolute number of apical 

in sensory and reward tufts (13 ± 7 and 9 ± 5 branches, respectively; mean ± s.d.; p = 0.08, Student t-test; Black line: median, 

box:  25th and 75th percentile,  whiskers: 5th and 95th percentile, outliers: points. d, Examples of L5 apical dendritic tufts 

reconstructed from two-photon image stacks. Branches are color-coded according to their functional class. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 5, 2024. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474360


37 

 

 

Supplementary Fig. 11 | AUC-based discrimination ability of L5 tuft dendritic branches. a, Pooled linear SVM 

discrimination power for ΔF/F activity in Hit vs. CR, Hit vs. FA and CR vs. FA trials of sensory-driven branches across 

learning. SVM-decoders were trained on the texture window (2.4 - 3.9s) and the outcome window (5 - 7s).  Grey lines 

indicate 5% and 95% quantile of randomly shuffled data. (n=48, 67 and 27 branches for naïve, learning and expert condition; 

Outcome window, Hit vs. CR: p*=0.04). b, Pooled discrimination for outcome-driven branches (n=22, 21, and 25 branches) 

c, Pooled discrimination in all dendritic tufts between FA versus CR trials (n=42 tufts), complementing the plots in Fig. 3a. 
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Supplementary Fig. 12 | Temporal-difference learning model for dendritic salience proceesing. a, Detailed schematic 

of basal inputs to S1 L5 neurons in the pure-selectivity model. A total of N = 203 neurons was modelled. Besides Go, NoGo, 

and Cue stimuli other distracting stimuli were applied (number of distractors, nd = 200).  b, Transfer function between apical 

input and apical dendritic activity. c, Dependence of gain modulation on apical activity and apical inputs. d, Evolution of the 

presynaptic input to sensory dendrites 𝑥𝑝𝑟𝑒, which represents an internal estimate of the conditioned salience, across 

learning in Hit trials. e, Evolution of the unsigned TD error across learning in Hit trials. f, Evolution of synaptic weights in cue, 

touch and outcome window across learning for Go, NoGo, Cue neurons and other distractor neurons. g, Evolution of the 

apical gain modulation across learning for Go, NoGo, Cue neurons and other distractor neurons.  
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Supplementary Fig. 13 | Computational model qualitatively reproduces 2P results of changes in event probability 

per trial window across learning. a, Unsigned TD error across learning in CR trials. b, Left: Event probability for event 

transient in CR trials in the Cue, Touch and Outcome window in sensory-driven and outcome-driven branches across 

learning based on 2P data and simulations (mean ± s.e.m., Sensory-driven branches, Cue window: naïve vs. expert, p= 

0.016; learning vs. expert, p=0.004; Touch window: learning vs. expert, p=0.008). c, Apical activity of sensory and outcome 

branches as well as somata belonging to Go and NoGo neurons in FA trials. d, Unsigned TD error across learning in FA 

trials. e, Event probability in FA trials (Sensory-driven branches, Cue window: naïve vs. expert, p=0.005; Outcome window: 

naïve vs. expert, p=0.003; Outcome-driven branches, Outcome window: naïve vs. expert, p=0.04). For the simulations all 

comparisons indicated as significant had p<0.001. *p<0.05, **p<0.01, ***p<0.001 
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Supplementary Fig. 14 | Computational model with mixed bottom-up selectivity. a, Schematic of the basal inputs’ 

connectivity in mixed-selectivity model. The basal synaptic weight matrix is randomly initialized and maps 3+nd inputs onto 

N L5 sensory pyramidal neurons (nd = 14; N = 200). b, Evolution of the synaptic weights onto sensory apical dendrites 

depending on the basal synaptic weight from the Go stimulus (top) or the NoGo stimulus (bottom). c, Strength of the synaptic 

weights onto sensory apical dendrites after 1800 trials dependent on the parameter θ0 (see Supplementary Notes) and on 

the basal synaptic weight from the Go stimulus (left) or the NoGo stimulus (right). d, Left: Histogram of the somatic selectivity 

of L5 pyramidal neurons towards Go/NoGo stimuli (quantified as the difference between the somatic responses to the Go 

and the NoGo stimulus) shown for the naïve state (before learning). Non-selective neurons are defined by somatic activity 

that neither favours Go nor NoGo texture (|x(Go)-x(NoGo)|<0.2) and neurons that were unresponsive to either stimulus were 

not shown. Inactive neurons were defined as neurons with a mean somatic response that was lesser than 0.1 during the 

stimulus window. Middle: Development of somatic response selectivity, depending on the basal selectivity towards Go/NoGo 

stimuli (quantified as the difference between the basal synaptic weights from the Go and NoGo stimulus). Right: Same as 

on the left but shown for the expert state (after 1800 trials). e,  Fractions of neurons that are Go-selective, NoGo-selective, 

non-selective or inactive in the naïve and expert state. 
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Supplementary Fig. 15 | Behavioral and electrophysiological controls of optogenetic perturbation. a, Average 

current source density across S1 around optogenetic perturbation (isoflurane aesthesia, 3 sessions, 2 mice, 300 trials). b, 

Example of multi-unit activity from a single location showing illumination position dependent suppression of multi-unit activity. 

c, Firing rate of L5 units with and without optogenetic manipulation according to fiber position (line: median, box: 25 th and 

75th percentile, whiskers: 5th and 95th percentile; 5 mW, 17 units, 200 trials, 8 sessions, n = 4 mice, no laser vs. surface 

p=1e-12; surface vs. superficial p=8e-6; surface vs. deep p=0.9e-20; t-test). d, Firing rate of L5 units with and without 

optogenetic manipulation of the surface according to laser intensity (0, 5, or 10 mW, 17 units, 200 trials, 6 sessions, n = 4 

mice; 0 mW vs. 5 mW p=0.0025; 5 mW vs. 10 mW p=0.0006, t-test). e, Learning curves of various control experiments with 

eArchT3.0-, eYFP- or GCaMP6f-expressing mice excited by 561-nm or 920-nm laser light with 2.5, 5.0, 7.5 or >120 mW 

light intensity (Green line: end of the laser perturbation after 1’800 trials).  f, Probability for Hit, CR and FA trials in naïve and 

expert state of control mice (filled circles), compared to the respective probabilities in optogenetically stimulated mice in 

naïve state, at the end of perturbation, and in  expert state (n = 8 and 5 mice for two-photon and optogenetic 

experiments;.Wilcoxon-ranksum test, p=0.031). g, Average lick rates during Hit trials in eYFP-expressing control mice (n = 

3; 5 mW laser illumination at 561 nm; 321, 401 and 589 trials in the naïve, learning, and expert condition) and eArchT3.0-

expressing mice (n = 5; 5 mW laser illumination, 1000 trials per condition) during and after perturbation (end of perturbation= 

last 200 perturbation trials, mean ± s.e.m). h, Comparison of normalized cumulative distribution of reward-triggering licking 

onsets in Hit trials in eArchT3.0- and eYFP-expressing mice. i, Average whisking angle in Hit trials in expert mice in laser 

on and laser off trials (468 and 428 trials; n = 3 mice). *p<0.05, **p<0.01, ***p<0.001 
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Supplementary Video 1 | Example two-photon calcium imaging videos of trunk and apical tuft dendrites 

showing global and local events. a, Example video showing a global event followed by a local event.Left 

panel: Motion-corrected calcium imaging movie of trunk cross-section in the lowest imaging plane (approx. 150 

µm below the pia)  recorded at 10 Hz.  Scale bar is 50 µm. Trunk ROI is shown in blue. Middle panel: Motion-

corrected calcium imaging movie of the most apical imaging plane (approx. 32 µm below the pia) recorded at 

10 Hz.  Scale bar is 50 µm. Example dendritic ROI is shown in red. Right panel: ΔF/F traces for the trunk (blue) 

and dendritic ROI (red). Scale bars are 2 s and 100%. b, Example video of a local event. c, Example video of a 

local event followed by a global event.   
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