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Abstract—How spiking networks are able to perform prob-
abilistic inference is an intriguing question, not only for un-
derstanding information processing in the brain, but also for
transferring these computational principles to neuromorphic
silicon circuits. A number of computationally powerful spiking
network models have been proposed, but most of them have only
been tested, under ideal conditions, in software simulations.
Any implementation in an analog, physical system, be it in
vivo or in silico, will generally lead to distorted dynamics due
to the physical properties of the underlying substrate. In this
paper, we discuss several such distortive effects that are difficult
or impossible to remove by classical calibration routines or
parameter training. We then argue that hierarchical networks
of leaky integrate-and-fire neurons can offer the required
robustness for physical implementation and demonstrate this
with both software simulations and emulation on an accelerated
analog neuromorphic device.

I. INTRODUCTION

Over the past decades, research in neural networks has

undergone an interesting branching process. On the one hand,

the machine learning community has gradually increased

its interest in what were originally brain-inspired neural

networks. These efforts have been crowned by impressive

recent success [1], [2], which has, however been obtained at

the price of having strayed away from biologically plausible

dynamics. On the other hand, modern computational neuro-

science is pushing for ever more complex and biologically

realistic simulations, in the hope to uncover the biological

details of information processing in the brain [3]. Today,

these two communities are investigating network models that

have little in common with each other.

In the meantime, the neuromorphic community has to

master an increasingly difficult balancing act. At its core, the

neuromorphic approach aims to mimic various features of the

neocortex in silico. For example, an essentially ubiquitous

feature of neuromorphic devices is that they are built to

emulate spiking neurons [4]–[9]. However, one core argu-

ment for building these devices is the hope to use them to

unlock the brain’s computational power by moving beyond

the von Neumann computing paradigms. Consequently, a

driving question for the neuromorphic community might

be formulated as follows: is it possible to find relevant

applications for spiking neural networks that can then profit

from the typical advantages of a physical implementation

such as inherent parallelism, high speed and low power

consumption? The findings discussed in this article suggest

a promising path towards finding an answer.

This issue is even more pronounced in the case of analog

hardware, since it imposes additional constraints that stem

from the physics of systems themselves. As opposed to digital

systems, be they von Neumann or neuromorphic, which have

the benefit of essentially perfect precision and control, analog

systems have to deal with inherent imperfections. These im-

perfections concern, on the one hand, the equations of motion
of the network components, which must obey the physics of

the substrate and can therefore only provide an approximation

of the target dynamics. On the other hand, the degree of

precision to which the parameters of these equations can

be tuned certainly depends on the hardware design, but is

always fundamentally limited by fixed-pattern variations and

temporal noise. Imperfections in the network dynamics and

parameters necessarily distort the behavior of the emulated

networks, which usually impairs their performance to some

degree [10].

The question of parameter control (i.e., calibration, post-

calibration tuning and training) is an essential one. It consti-

tutes a perennial challenge for analog neuromorphic system

design and operation, and has therefore been often addressed

in literature [10]–[13]. A thorough discussion of parameter

calibration and in-the-loop training of analog circuits can be

found in [14], which represents a complement of the present

study. In the present manuscript, we are mainly concerned

with the distortions to the network dynamics that are imposed

by the physics of the emulation device and that cannot be

directly addressed by, e.g., calibration.

We begin by identifying a Bayesian spiking network model

with valuable computational properties (Sec. II). It is able to

learn a probabilistic model of input data and can subsequently

be used as both a generative and a discriminative model

— a feature that is difficult to achieve even with abstract

neural networks [15]. Here, we focus on its discriminative

properties. This model is, in general, susceptible to hardware-
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induced distortions, as we discuss in detail in Sec. III. As

a particular example, we characterize these effects on the

Spikey chip [5] — the neuromorphic system that we use as

an emulation back-end. Despite our model’s ostensible lack

of robustness, we argue that, when endowed with a particular,

hierarchical connectivity structure, it becomes robust to the

studied hardware-induced distortions. We substantiate this

conjecture with both software simulations (Sec. IV) and

hardware emulations (Sec. V). In particular, without any

training to compensate for parameter noise on the hard-

ware, we show that the network only loses a relatively

small fraction of its initial performance when running on

Spikey. This represents, to our knowledge, the first scalable

implementation of a hierarchical probabilistic network in

accelerated analog neuromorphic hardware.

II. LIF-BASED BOLTZMANN MACHINES

Continued technological advances in large-scale process-

ing (parallel CPU and GPU architectures) have enabled

the recent resurgence of artificial neural networks. Already

envisioned for decades as theoretical models of brain-like

architectures [16], [17], neural networks now routinely out-

perform their rival models at pattern recognition tasks [1].

Here, we focus on one particular neural network model —

a spiking variant of the Boltzmann machine (BM) [18],

which has been shown to be compatible with biologically

plausible and hardware-implementable spiking neurons [19].

We now briefly describe the structure and dynamics of these

stochastic networks of leaky integrate-and-fire (LIF) neurons

and discuss potential problems that can arise from their

implementation in analog hardware.

In the neural sampling framework [20], a population of

n neurons represents a binary random vector z ∈ {0, 1}n.
The refractory state of a neuron following a spike at time ts
is chosen to represent the 1-state of the associated random

variable (see also Fig. 1A):

z
(t)
k =

{
1 if ts < t < ts + τref ,
0 otherwise .

(1)

In the abstract model of neural sampling, the probability

of each neuron to be in the 1-state is given by a logistic

activation function

p(zk = 1|z\k) = σ(uabstr
k ) =

1

1 + e−uabstr
k

. (2)

Such an abstract neuron’s membrane potential uabstr
k has a

resting-state value of bk and is linearly influenced by the

state z\k of all other neurons in the network via (symmetric)

synaptic weights Wkj = Wjk:

uabstr
k (z\k) =

n∑
j=1

Wkjzj + bk . (3)

It can then be shown that, under these assumptions, a network

of such stochastic neurons will sample from a Boltzmann

distribution

p(z) =
1

Z
exp[−E(z)] =

1

Z
exp

[
1

2
zTWz + zT b

]
,

(4)

with the partition function Z as a normalization factor.

In order to achieve similar dynamics with LIF neurons,

an equivalent firing regime needs to be established. In the

LIF sampling framework [19], each neuron receives two

kinds of spiking input: information-encoding input from other

neurons in the network and diffuse background input that

represents the source of stochasticity, modeled by Poisson

sources. These input spike trains generate two types of

current onto the membrane, which we denote by Isyn and

Inoise, respectively:

Cm
d

dt
uk = gl(El − uk) + Isynk + Inoisek + Iextk . (5)

Here, Cm is the membrane capacitance, gl and El are the leak

conductance and potential, and Iextk is an external current that

determines the bias bk. While in general noisy LIF neurons do

not have a logistic activation function, as required in Eqn. 2,

it has been shown that in a high-conductance state the LIF

activation function can be well approximated by a logistic

function that is scaled with parameters α and ū0
k [19], [21]:

p(zk = 1|z\k) = σ

(
ūk − ū0

k

α

)
, (6)

where ūk = 〈uk〉t represents the noise-free membrane

potential of the kth neuron. This equivalence to the abstract

model enables an LIF neuron to sample correctly from its

conditional distribution p(zk|z\k). The translation of the

Boltzmann parameters (W , b) in Eqn. 4 to the conductance-

based LIF domain (synaptic weights w, bias potentials ū0)

can then be achieved using the following rules:

bk = (ūb
k − ū0

k)/α (7)

Wkj =
1

αCm

wkj

(
Erev

kj − μ
)

1
τsyn − 1

τeff

×
[
1− e

e
− τeff
τ syn

(
e
− τsyn

τeff − 1
)]

, (8)

where μ is the mean of the free membrane potential, τeff =
Cm/(gl+gsyn) is the effective membrane time constant in the

high-conductance state, gsyn the total synaptic conductance,

τ syn the synaptic time constant and Erev the synaptic reversal

potential. This allows a direct mapping of abstract BMs to

networks of LIF neurons that sample accurately from their

target distribution (Fig. 1B-D).

It is important to note that such networks are not merely

more complicated replicas of classical machine learning

approaches. In addition to being able to emulate the compu-

tational power of traditional Boltzmann machines, these spik-

ing networks can also harness certain biological mechanisms

to extend their functionality. It has, for example, been shown,

that when endowed with short-term synaptic plasticity, LIF-

based BMs can become good generative models of their

learned datasets, while at the same time maintaining a high

classification performance when presented with individual

data samples [15].

Such LIF networks are now amenable to training with any

of the established algorithms for BMs. While backpropaga-

tion [22] is more difficult to implement in a biologically
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Fig. 1. Sampling with LIF neurons and distortions induced by implementation in a physical substrate. (A) Exemplary membrane potentials from a sampling
network of LIF neurons. Each neuron has an associated random variable zk ∈ {0, 1} which is equal to 1 when the neuron is refractory. (B) Schematic of a
recurrent network of LIF neurons in the HCS with a symmetric synaptic weight matrix w and bias potential vector ū0, which approximates a Boltzmann
machine (C, D) with parameters given by Eqns 7 and 8. (C) Exemplary state distribution of a 3-neuron network: sampled distribution p(z) (blue) vs. target
distribution p∗(z) (red) after 103 ms. (D) Evolution of the Kullback-Leibler divergence DKL (p ‖ p∗) over time. Multiple runs with different random
seeds are marked with different colors. (E) Synaptic transmission delays change temporal correlations between the states of different neurons. In this
example, we consider two neurons connected with large excitatory weights w12 = −2b1 = −2b2. Without delays (Δt = 0, top), the network samples
correctly from its target distribution p(0, 0) = p(1, 1) ≈ 0.5, p(0, 1) = p(1, 0) ≈ 0. With relatively large delays (Δt = τref/2, bottom), the sampled
distribution becomes completely different, with p(0, 1) � 0 and p(1, 0) � 0. The wrongly sampled mixed states, marked in red, are a direct consequence
of the synaptic transmission delays. (F) An imperfect high-conductance state (τeff � 0) leads to a deviation of the neuronal activation function from its
ideal logistic shape. This modifies the sampled distribution by reducing the probability of neurons to spike, especially for positive biases. (G) Refractory
times and synaptic time constants are coupled to ensure that the average interaction between neurons during refractoriness (blue-shaded PSP in the LIF
model) has the correct amplitude (red-shaded rectangular PSP in the abstract model), given in Eqn. 8. Spike-to-spike variability of refractory times disrupts
this equivalence (green and blue dashed lines), effectively modifying the interaction strength W .

plausible network, other methods exist that are more com-

patible with Hebbian learning. The wake-sleep algorithm, in

particular, requires each synapse to only have access to the

activity of its pre- and its postsynaptic neuron [23]:

Δwij = η(〈zizj〉data − 〈zizj〉model) , (9)

Δbi = η(〈zi〉data − 〈zi〉model) . (10)

This learning rule tries to adapt the activity zmodel of the

network in the “dreaming” phase, during which it evolves

freely, to its activity zdata in the “awake” state, where it

is constrained by data, i.e., where some of the units are

clamped to particular values. Despite its simplicity, this

learning algorithm can be used to achieve high classification

rates on various machine learning datasets [24].

III. CRITICAL DISTORTIONS IN PHYSICAL

IMPLEMENTATIONS

The distribution that an LIF network samples from is

uniquely determined by the neuro-synaptic dynamics and

parameters. Any deviation from the model specification will

alter the sampled distribution and, in general, restrict the

network’s ability to perform correct inference in the learned

sample space. Mapping this model to an imperfect physical

substrate is therefore not straightforward. In this article, we

study three types of distortions of network dynamics that are

caused by mapping to an analog silicon substrate.

First, we consider spike transmission delays. Since we

are using point neurons, we can describe all delays as

being synaptic delays. Many analog neuromorphic devices,

including the one we use later on, are mixed-signal systems,

meaning that spikes are transmitted digitally. Consequently,

digitization, transport of the digital data, and the conver-

sion back to the analog domain in the synapses contribute

to synaptic delays. While these delays may be short in

terms of wall-clock time, they become particularly critical

in accelerated systems. In such systems, the neuronal and

synaptic dynamics that define the characteristic time scale

on which the network evolves can be orders of magnitude

smaller than in biology, potentially entering the range of

synaptic transmission delays [10]. Regardless of the exact

nature of a network performing neural sampling, in order for

each neuron to be able to calculate its correct conditional

distribution p(zk|z\k), the information gathered by a neuron

from its incoming PSPs must coincide with the true state

of the corresponding presynaptic neurons, as required by

Eqn. 3. This temporal coincidence is disrupted by delays,

which thereby distort the sampled distribution, as exemplified

in Fig. 1E.

Second, while most neuromorphic systems have control-

lable neuron and synapse parameters, these can only be con-

figured within a certain range and resolution. As an example,

consider the membrane time constant τm of a neuron. This
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Fig. 2. Characterization measurements for the employed neuromorphic
system. (A) Top: Neuromorphic Spikey chip with overlaid sketch of neural
network components (taken from [5]). Bottom: Simplified schematic of a
single neuron. (B) Top left: Synaptic delays were measured by recurrently
connecting each neuron to itself through an inhibitory synapse. Bottom
left: The relatively sharp onset of the inhibitory PSP allows a precise
measurement despite the temporal noise on the membrane potential. Right:
Synaptic delay distribution of 192 neurons for a single synapse driver. (C)
Activation functions of 44 Spikey neurons (thin solid lines) compared to the
nearly ideal logistic activation function achieved in the high-conductance
state (dashed line). Two exemplary activation functions are drawn with
thicker lines: the blue and red activation functions belong to neurons with
short and long τeff , respectively. (D) Top: Refractory times were measured
by choosing a suprathreshold leak potential for all neurons and subtracting
the reset-to-threshold first passage time from the interspike interval. Bottom:
Relative spike-to-spike variability of the refractory time vs. mean refractory
time for 192 Spikey neurons.

time constant can be considered to define the reaction speed

of a neuron to external stimuli. In neuromorphic systems, τm
is usually configured with an adjustable leak conductance,

which can not become arbitrarily large. Such a limit in the

reaction speed of neurons can impair the functionality of

the entire network. For LIF neurons, a large τm slows the

saturation of the activation function (Fig. 1F) and thereby

distorts the logistic shape (Eqn. 6) required for sampling from

Boltzmann distributions.

Third, temporal noise can also affect computation. Depend-

ing on the particular in-silico implementation, any analog

system will be subject to some degree of temporal noise

on all of its electronic signals, including those that directly

influence neuro-synaptic dynamics. In our particular case,

the largest temporal noise component affects refractory times

τref . Since the relevant neuron and synaptic circuits are phys-

ically disconnected on the chip, the spike-to-spike variation

of τref is independent from the synaptic time constant, which

can be considered as fixed. Consequently, the state zk(t) of

a neuron will not coincide anymore with the information

it transmits via PSPs to its postsynaptic partners (Fig. 1G),

leading to a distortion of the sampled probability distribution

in a conceptually similar manner as synaptic delays do.

In this study, we use the Spikey single-chip system as a

physical emulation substrate [5]. This mixed-signal device

combines analog components for modeling membrane and

synapse dynamics with digital circuitry for the spike-based

communication. Fig. 2 shows a photo of the device, along

with a sketch of the neuron circuit which illustrates the origin

of the three distortive effects discussed above.

The overlay in Fig. 2A shows how a spike emitted by a

neuron (blue triangle) travels through communication buses

(white line) to a synapse driver (red pentagon), which gener-

ates a voltage ramp that is fed into the synapse array (green

circles). Inside the synapse, the voltage ramp is converted to

an approximately exponential signal that is added to the total

synaptic conductance of the neuron circuit. This sequence of

processing stages causes the effective synaptic delays seen in

Fig. 2B.

The neuron schematic in Fig. 2A explains the cause of

non-logistic activation functions and noisy refractory times.

All reversal potentials are connected to the membrane

by conductances that saturate at a certain amplitude. The

maximum total conductance defines a minimum achievable

effective membrane time constant, which limits the gain of

the LIF activation function, as seen in Fig. 2C.

The duration of the refractory time is determined by a

monoflop controlled by a current Iref ∝ 1/τref . In order

to offset, at least to some extent, the effect of delays (see

Fig. 1E) we require long refractory times, i.e., small currents,

which cause some of the transistors in the monoflop to

leave saturation and operate in a sub-threshold regime. This

transition is accompanied by an increase in the relative

amplitude of temporal noise, which increases the variability

of τref . This represents the primary cause of the large spike-

to-spike fluctuations of the refractory time seen in Fig. 2D.

Having identified the origins for critical distortions in

physical implementations of LIF sampling, we next turn to

the central question of this study: is it possible to recover

the computational capabilities of LIF sampling networks
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Fig. 3. Hierarchical LIF networks and their robustness to hardware-
induced distortions. (A) Structure of the studied LIF network. (B) Top row:
Exemplary training sample obtained from the MNIST dataset after resolution
reduction and binarization. Bottom row: Exemplary training samples from all
other classes. (C)–(F) Influence of simulated hardware-induced distortions
on the classification performance of the network from A. Error bars represent
the standard deviation over multiple runs with different random seeds. Green:
performance on training data. Blue: performance on test data. Brown: mean
value and standard deviation of the respective parameter measured on Spikey
(see Fig. 2).

by finding a network architecture that is robust to these

substrate-induced effects?

IV. ROBUST HIERARCHICAL LIF NETWORKS

The general framework of LIF sampling does not impose

any restrictions on the network topology apart from the

requirement of a zero-diagonal symmetric synaptic weight

matrix Wii = 0, W = W T . However, imposing further

restrictions on connectivity is of practical use.

When building a network that is able to learn and gener-

alize from data, a rather natural hierarchization consists in

subdividing the network into a layer representing the “visi-

ble” data, one or more hidden layers that recognize common

features of data samples, and a final classification layer that

assigns each sample a particular category or label. Indeed,

this has been the guiding principle behind hierarchical neural

networks, from multilayer perceptrons to deep convolutional

nets [25]. In the case of BMs, the further removal of

lateral connections within a layer has proven particularly

beneficial for learning [26]. The resulting networks are so-

called restricted Boltzmann machines (RBMs) and can be

emulated by LIF networks with appropriate parameters as

described in Sec. II.

The core insight of our present work is that hierarchical

LIF networks that emulate RBMs exhibit notable robustness

to the hardware-induced distortions discussed above. In this

section, we argue why this is the case and demonstrate this

robustness with software simulations of such a network with

3 layers (Fig. 3A).

Synaptic delays and noisy refractory times have similar

effects on the sampled distribution. However, the nature

of the information flow in LIF-based RBMs is expected

to counter them both simultaneously. When presented with

unambiguous input data, the mean firing rates of the visible

neurons vk are fixed; in our application, for example, they

encode the grayscale values gk ∈ {0, 1, . . . , 255} of pixels

in the input image: p(vk = 1) = gk/255. In this regime,

spike transmission delays have no effect, as the visible layer

essentially operates in a rate-based mode for which time

shifts do not matter. In this operating mode, the refractory

noise is also averaged out.

Transmission delays and noisy refractory times remain

critical for the interaction between hidden and label neurons.

However, this interaction is comparatively weak in our 3-

layer architecture (see Fig. 3A). In real-world scenarios, the

label space typically has a much smaller dimensionality than

the input space. Each hidden neuron therefore receives input

from many visible neurons but only from few label neu-

rons. Therefore, even though the visible-to-hidden synaptic

weights are approximately as large as those between the

hidden and label layer, the summed input from the visible

layer is completely dominant by virtue of sheer numbers.

Therefore, as the hidden layer is mostly driven by the input

layer, the distorted interaction between the hidden and label

neurons is likely to become insignificant.

The finite membrane time constant, on the other hand,

can affect neurons in all layers and can not be neglected.

However, this effect can be countered, at least to some extent,

by the nature of the sampled distribution in well-trained

networks. Wake-sleep training has the effect of carving of

deep troughs in the network’s energy landscape E(z). These
energy minima (probability maxima) correspond to particular

patterns in each of the network layers, which are local

attractors in the state space. Thus, if the deviations in the

sampled distribution are small, the attractor landscape will

not change significantly. Consequently, when the visible layer

is clamped to input data, the above layers are still likely to

fall into the corresponding attractor state, thus conserving the

classification performance.

We tested these predictions in a series of software simula-

tions. We trained a 3-layer LIF-based RBM (Fig. 3A) on

a reduced version of the MNIST dataset [27]. To ensure

compatibility with the Spikey chip, the network size was

restricted to 144 visible, 50 hidden and 6 label neurons.

The 12× 12 pixel images belonging to 6 digit classes (“0”,

“1”, “2”, “3”, “4”, “7”) were produced by first reducing the

MNIST digit resolution, followed by binarization of the pixel

values (Fig. 3B). For each class, both the training and the test

set consisted of 20 randomly chosen images. The training

consisted only of layer-by-layer pre-training with a wake-

sleep-style algorithm [28]. We have deliberately refrained

from fine-tuning the weights with, e.g., backpropagation, in
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order to maintain compatibility with Hebbian plasticity.

Fig. 3C-E show the simulated effects of the three

hardware-induced distortion mechanisms discussed above.

As expected, neither synaptic transmission delays (Fig. 3C)

nor variability of refractory times (Fig. 3D) affected the

performance of the network significantly. Over a surprisingly

large range of membrane time constants, the classification

rate remained almost unaffected. Only after the activation

function became significantly distorted by large τm did the

attractor landscape change significantly enough to cause a

decay in the classification rate (Fig. 3E). Overall, within the

parameter ranges of the Spikey chip, our network remained

only weakly affected by the studied mechanisms.

However, since in a later step the network was mapped

to the hardware without any further training, we needed

to also consider the effect of discretized synaptic weights.

By default, synaptic weights on the Spikey chip are only

controllable up to 4-bit precision [5]. It is important to note

that this does not pose a fundamental problem to networks

of this type; the effects of weight discretization can be

countered by appropriate in-the-loop training, as discussed

in, e.g., [14], [29]. Here, we only take this effect into account

as a preparation of the hardware experiments in Sec. V.

Fig. 3F shows the effect of weight discretization on the

network’s classification performance. For the Spikey chip,

the performance decay lies at approximately 5.6%. Note that

this effect is significantly larger than the effects caused by

each of the other distortion mechanisms.

A combined simulation of all distortive effects was used

to provide a reference for the later emulation on Spikey.

All effects were simulated with amplitudes corresponding to

values measured on Spikey (blue bars in Fig. 3C-F, see also

Fig. 2). In the ideal, undistorted case, the LIF network had

a classification performance of

Rtrain = 93.4± 0.9%

Rtest = 86.6± 1.7% ,
(11)

which was reduced to

Rtrain = 90.7± 1.7%

Rtest = 78.1± 1.5%
(12)

when all distortive effects were simultaneously present. A

comparison to Fig. 3F shows that most of this performance

decay was due to the 4-bit weight discretization.

V. NEUROMORPHIC IMPLEMENTATION

The mapping of the network to Spikey required a series

of modifications, which we discuss in the following.

In the previous section, we argued that visible neurons

essentially operate in a rate-based mode during clamping.

This allows the activity νi of each visible neuron to be

modeled as an effective bias

b̃ki = p(vi = 1) · wki , (13)

to the kth hidden neuron, where vi represents the state of

the ith visible neuron and wki the synaptic weight between

the ith visible and the kth hidden neuron. The complete
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simulation of a distortion-free LIF network (cf. leftmost data points in
Fig. 3C-E). Purple: Software simulation of the LIF network with all
distortion mechanisms being present simultaneously, with amplitudes and
variances as measured on Spikey (cf. areas in Fig. 3C-E highlighted in
brown). Green: Hardware emulation of the hidden layer with software
evaluation of the label layer. Blue/red: Emulation of the hidden layer with
repeated use of single neurons, followed by software evaluation of the label
layer. The two “bad” neurons marked in red were not well configurable and
therefore performed at chance level. (B) Exemplary spike trains of a subset
of neurons in the LIF network with the hidden layer running on hardware.
Spike trains belonging to the two “bad” neurons from A are marked in red.

visible layer can then be omitted altogether and replaced by

an effective bias b̃k for each hidden neuron:

b̃k =
∑
i

b̃ki + bk , (14)

where bk is the original bias of the kth hidden neuron. In our

particular case, since we use 12× 12–pixel binarized images

and have set all biases to zero during training in order to

simplify the transition to hardware, this reduces to

b̃k =
144∑
i=1

wkivi . (15)

On the chip, biases are implemented as high-frequency

regular spike trains connected to the hidden neurons with

weights wb
k. For an arbitrary synaptic kernel scaled with wb

k,

the average effect of a regular spike train on the membrane

potential of an LIF neuron is proportional to wb
k. Therefore,

b̃k can be controlled, within the imposed 4-bit precision, by

appropriately configuring wb
k. Note that these spike trains

also need to be routed across the chip (Fig. 2), so this does

not circumvent synaptic delays.

For the hidden layer, we have chosen those 50 neurons on

the chip which responded best to the bias stimulus described
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above. Only half of the chip was used for these experiments

in order to simplify on-chip routing.

The label layer was implemented in software. Spikes

produced by the hidden layer were fed into six label neurons

simulated with NEST [30]. With this, we essentially broke

the hidden→label→hidden feedback loop, but as we argued

in Sec. IV, it should not significantly affect the classification

performance of the network. Furthermore, this allowed a

more detailed investigation of the quality of single neurons

on the chip, as discussed below. The label assigned by the

network to the input image was determined by the label

neuron which produced the most spikes during the clamping

period.

Fig. 4 shows the classification performance of this setup,

along with the spike trains from several exemplary classifica-

tion runs. The performance of the hardware implementation

was
Rtrain = 89.8± 1.8%

Rtest = 80.7± 2.3% .
(16)

Within the error margins, this corresponds very well to the

reference software simulations (12). The slightly better aver-

age classification can be attributed to the explicit selection of

the 50 hidden neurons. Indeed, this result not only confirms

the robustness of our network model, but also highlights

its robustness to various other hardware-induced distortions

that we did not explicitly account for, such as parameter

noise and crosstalk [5]. Furthermore, this implementation is

surprisingly robust even towards few neurons having strongly

deviant firing characteristics, as discussed below.

In our network model, hidden neurons are not laterally

interconnected. Furthermore, as the label layer was simulated

in software, there was also no label-mediated lateral inter-

action between hidden neurons. Therefore, it was possible

to emulate the entire network with one Spikey neuron at

a time. In an alternative emulation setup, a sequence of

k = (1, . . . , 50) emulation runs containing a single hard-

ware neuron was performed. In the kth run, the hardware

neuron was configured to represent the kth hidden neuron

by receiving the corresponding input spike train. The output

spike trains from these runs were aggregated and fed into

the label layer, as before. This experiment was repeated for

a subset of 38 out of the 50 selected hardware neurons, with

the results plotted as thin bars in Fig. 4A.

The overall performance of each neuron quantifies its

quality for the task at hand. The main reason for the differ-

ences between the neurons is the shape of their activation

function, some of which can be seen in Fig. 2C. Some

neurons perform poorly because their activation function is

too shallow, thus strongly skewing the sampled distribution.

At the other extreme, a very steep activation function is also

detrimental, because the resolution of the synaptic weights

does not permit an arbitrarily fine-grained tuning of effective

weights and biases. Note, in particular, how two of the

neurons perform at chance level (Fig. 4A, red bars). However,

the existence of such neurons does not appear to have a strong

effect on the classification performance of the network as a

whole (Fig. 4A, purple vs. green bar).

VI. DISCUSSION

One of the most important challenges for analog neuro-

morphic computing is the design of neural network archi-

tectures that are robust to hardware-induced distortions of

network dynamics and parameters. In this paper, we have

argued that hierarchical spiking sampling networks emulating

restricted Boltzmann machines are inherently resistant to

such distortions. We have studied three specific distortion

mechanisms that are, in general, strongly disruptive to the

ongoing computation in sampling LIF networks: synaptic

transmission delays, variability of refractory times and satu-

rating membrane conductances. Despite their apparent sensi-

tivity, we have shown how a hierarchical topology shapes the

information flow in a way that makes them largely resilient

to these effects. The results obtained in software simulations

were also confirmed in experiments on an accelerated ana-

log neuromorphic device. Furthermore, in addition to being

robust to the studied distortion mechanisms, our network

model also displayed an encouraging degree of resilience to

other hardware-induced effects which can not be quantified

as systematically as the studied ones.

The choice of our neuron model (LIF) was made, on one

hand, for analytical tractability, but, more importantly, due

to the fact that this model represents a common denominator

for many other spiking neuron models (Hodgkin-Huxley,

Izhikevich, AdEx). With appropriate parameter choices, all

of these models can achieve dynamics that are close to those

required for sampling. Furthermore, the LIF model represents

a de-facto standard in neuromorphic engineering [4]–[9].

Altogether, the observed properties of these networks

encourage further theoretical and experimental investigation.

Here, we only studied relative performance losses, so we

only used a relatively small network and a very small dataset.

Software simulations show that larger-scale versions of these

networks enable efficient and powerful inference in more

complex data spaces [15]. It will be interesting to see whether

such large networks remain as robust to hardware-induced

distortions as their smaller instantiations studied here. Large-

scale accelerated analog devices are already in place [6]

and will be able to accomodate these experiments. With

our proposed architecture and rather conservative clamping

schedule of 1 biological second per image (Fig. 4B), the

currently achieved acceleration factor of about 104 will, for

example, enable the classification of the full MNIST dataset

within 1 s of wall-clock time.

Although we only used our hierarchical LIF networks for

classification, they can also be used as generative models

to perform, for example, pattern completion. The nature

of the energy landscape in these networks suggests that

their generative properties could also be robust to hardware-

induced distortions. Since a clear image corresponds to a

deep mode in the energy landscape, small distortions in

the sampled distribution are unlikely to strongly disrupt the

generative properties of the network. Probabilistic switching

between different modes when ambiguous input is present

can then be facilitated by short-term plasticity as shown
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in [15], a mechanism that is readily available on several

accelerated neuromorphic platforms [5], [6].

In this paper, we have deliberately refrained from further

training of the hardware-emulated networks. However, it

is expected that training the hardware “in the loop” will

significantly improve classification. The idea behind in-the-

loop training is to iteratively alternate between a forward pass

on hardware, during which the emulated network activity is

recorded, and a backward pass in software, where the net-

work parameters are updated by, e.g., error backpropagation.

Recent studies have demonstrated, both in software [31] and

on analog neuromorphic hardware [14], that the parameter

updates need not be precise, but only approximately follow

the gradient of the likelihood function. Furthermore, acceler-

ated systems currently in development [32], [33] also imple-

ment powerful on-chip learning solutions. Such architectures

will not only enable accelerated classification, but, even more

importantly, accelerated learning of the network parameters.
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