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a b s t r a c t

Nonlinear filtering is used in online estimation of a dynamic hidden variable from incoming data
and has vast applications in different fields, ranging from engineering, machine learning, economic
science and natural sciences. We start our review of the theory on nonlinear filtering from the simplest
‘filtering’ task we can think of, namely static Bayesian inference. From there we continue our journey
through discrete-time models, which are usually encountered in machine learning, and generalize to
continuous-time filtering theory. The idea of changing the probability measure connects and elucidates
several aspects of the theory, such as the parallels between the discrete- and continuous-time problems
and between different observation models. Furthermore, it provides insight into the construction of
particle filtering algorithms. This tutorial is targeted at scientists and engineers and should serve as an
introduction to the main ideas of nonlinear filtering, and as a segway to more advanced and specialized
literature.
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1. Introduction: A guide to the guide

‘‘The introduction begins like this:
Space, it says, is big. Really big.
You just won’t believe how vastly hugely mind-bogglingly
big it is.’’

[Douglas Adams]

Filtering is the problem of estimating a dynamically changing
state, which cannot be directly observed, from a stream of noisy
incoming data. To give a concrete example, assume that you are
a Vogon in charge of a spaceship. Since you had a particularly
bad day, you decide to destroy a small asteroid to make yourself
feel better. Before you push the red button, you need to know the
current position of the asteroid, which corresponds to the hidden
state Xt . You have some idea about the physics of movement in
space, but there is also a stochastic component in the movement
of your target. Overall, the asteroid’s movement is described by
a stochastic dynamical model. In addition, you cannot directly
observe its position (because you like to keep your safe distance),
so you have to rely on your own ship’s noisy measurements Yt
of the position of the asteroid. Because of these uncertainties,
it would not only be useful to have an estimate of the aster-
oid’s current position Xt based on the history of measurements
Y0:t = {Y0, Y1, . . . , Yt}, but also an estimate of the uncertainty of
the estimate. Thus generally, the conditional probability density
p(Xt |Y0:t ) is the complete solution to your problem (and the
beginning of the problem of how to find this solution).

These sorts of problems are not only relevant for bad-
tempered Vogons, but in fact are encountered in a wide variety of
applications from different fields. Initial applications of filtering
were centered mostly around engineering. After the seminal
contributions to linear filtering problems by Kalman (1960) and
Kalman and Bucy (1961), the theory was largely applied to satel-
lite orbit determination, submarine and aircraft navigation as
well as space flight (Jazwinski, 1970). Nowadays, applications
of (nonlinear) filtering range from engineering, machine learn-
ing (Bishop, 2006), economic science (in particular mathematical
finance, some examples are found in Brigo & Hanzon, 1998)
and natural sciences such as geoscience (Van Leeuwen, 2010),
in particular data assimilation problems for weather forecast-
ing, neuroscience and psychology. As a particular example for
its usefulness in neuroscience, the modeling of neuronal spike
trains as point processes (Brillinger, 1988; Truccolo, 2004) has
led to interesting filtering tasks, such as the problem of decoding
a stimulus from the spiking activity of neurons (e.g. Koyama,
Eden, Brown, & Kass, 2010; Macke, Buesing, & Sahani, 2011).
In psychology, nonlinear filtering techniques are not only used
for data analysis, but can also provide qualitative insight into
psychological processes such as perception (Körding, Tenenbaum,
& Shadmehr, 2007; Wolpert, Ghahramani, & Jordan, 1995) or de-
cision making (Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget,

2014; Glaze, Kable, & Gold, 2015; Piet, Hady, Brody, Hady, &
Brody, 2018; Radillo, Veliz-Cuba, Josić, & Kilpatrick, 2017; Veliz-
Cuba, Kilpatrick, & Josić, 2016). To tackle these kinds of questions,
knowledge about nonlinear filtering is indispensable. Theoretical
understanding can further help in connecting and unifying spe-
cific applications of filters and is paramount for understanding
more advanced topics in filtering (Jazwinski, 1970, Section 1.2).

The aim of this tutorial is to present – in an easily accessible
and intuitive way – the theoretical basis for continuous-time
nonlinear filtering with diffusion and point-process observations.
The tutorial highlights the change of measure as a powerful
tool to derive the fundamental equations of nonlinear filtering
as well as numerical approximations. In addition, the unifica-
tion provided by the concept of change of measure provides a
solid basis for diving into the huge body of literature on non-
linear filtering. Our tutorial complements the more advanced
theoretical literature (e.g. Bain & Crisan, 2009; Bremaud, 1981;
Jazwinski, 1970) or more specialized tutorials, e.g. on particle
filtering (Arulampalam, Maskell, Gordon, & Clapp, 2002; Doucet
& Johansen, 2009; Speekenbrink, 2016), Hidden Markov Mod-
els (Rabiner, 1989; Visser, 2011) or variational Bayes for latent
linear systems (Ostwald, Kirilina, Starke, & Blankenburg, 2014).

2. A view from space: from Bayes’ rule to filtering

‘‘Even the most seasoned star tramp can’t help but shiver
at the spectacular drama of a sunrise seen from space,
but a binary sunrise is one of the marvels of the Galaxy’’.

[Douglas Adams]

Suppose that we observe a random variable Y and want to infer
the value of an (unobserved) random variable X . Bayes’ rule tells
us that the conditional distribution of X given Y , the so-called
posterior, can be computed in terms of three ingredients: the
prior distribution p(X), the likelihood p(Y |X), and the marginal
likelihood P(Y ), which acts as a normalizing constant:

p(X |Y ) =
p(Y |X)p(X)

p(Y )
. (1)

This tutorial is concerned with the application of the above idea to
a situation where X, Y are continuous-time stochastic processes
and we want to perform the inference online as new data from
Y comes in. In this section, we want to gradually build up the
stage: as some readers might be more familiar with discrete-time
filtering due to its high practical relevance and prevalence, we
will start our journey from there, picking up important recurring
concepts as we make our way to continuous-time filtering.

2.1. Changes of measure

Before we talk about dynamic models, let us briefly highlight a
concept in Bayesian inference that will be very important in the
sequel: that of changing the probability measure. A probability
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Fig. 1. Consider the problem of empirically approximating the beta distribution p(x) = Beta(x; 4, 4) (blue) with samples from the uniform distribution between 0 and
1, q(x) = U(x; 0, 1) (red). (a) The density of those samples does not represent the Beta distribution, but (b) a combination of the density of samples together with
their respective importance weights according to Eq. (8). Here, the size of a dot represents the weight of the respective sample. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

measure is a function that assigns numbers (‘probabilities’) to
events. If we have two such measures P and Q, then P is called
absolutely continuous w.r.t. Q if every nullset of Q is a nullset of
P. Moreover, P and Q are called equivalent if they have the same
nullsets. In other words, if A denotes an event, and P(A) denotes
its probability, then equivalence means that Q(A) = 0 if and only
if P(A) = 0.

But why would we want to change the measure in the first
place? Changing the measure allows us to compute expectations
of a measurable function φ(x) with respect to a measure Q, which
were originally expressed with respect to another measure P. To
see this, consider the two measures P and Q for some real-valued
random variable X , and write them in terms of their densities p, q
(with respect to the Lebesgue measure).1 We then have

EP [φ(X)] =

∫
dxφ(x)p(x)

=

∫
dx

p(x)
q(x)

φ(x)q(x) = EQ [L(X)φ(X)] , (2)

where we introduced the likelihood ratio L(x) :=
p(x)
q(x) and EQ

denotes expectation under the distribution q. Thus, changing the
measure proves to be very useful whenever expectations under
Q are easier to compute than under P.

A fundamental problem in filtering is that of computing a con-
ditional expectation (i.e. an expected value under the posterior
distribution) of this sort:

EP[φ(X)|Y ] =

∫
dxφ(x)p(x|Y ) (3)

for some function φ, and we want to use Eq. (1) to compute
p(X |Y ). We therefore have to compute the two integrals here

EP[φ(X)|Y ] =

∫
dxφ(x)

p(Y |x)p(x)
p(Y )

=

∫
dxφ(x)p(Y |x)p(x)∫
dx p(Y |x)p(x)

, (4)

but the structure of the model (interactions between X and Y )
might make it very hard to compute the integrals, either ana-
lytically or numerically. Thus, we again change the measure to
a reference measure Q with joint density q(x, y), and rewrite
Eq. (4):

EP[φ(X)|Y ] =

∫
dxφ(x) p(x,Y )q(x,Y )q(x, Y )∫
dx p(x,Y )

q(x,Y )q(x, Y )
=

EQ[L(X, Y )φ(X)|Y ]

EQ[L(X, Y )|Y ]
, (5)

where now the likelihood ratio L(x, y) =
p(x,y)
q(x,y) is a function of

both x and y.
The hope is that we can pick a reference measure Q such

that both L(x, y) and q(x, y) are simple enough to make Eq. (5)

1 In this section, all ‘densities’ are with respect to the Lebesgue measure.

more tractable than Eq. (3). For instance, some simplification
might be achieved by switching from a model p(x, y) of P in
which X and Y are coupled, i.e. statistically dependent, to a model
p(x)q(y) of Q where they are independent (while preserving the
distribution of X), i.e. under model Q we find q(x, y) = p(x)q(y). A
potential added advantage of changing the measure is when the
distribution q(y) is computationally simple. Then, the likelihood
ratio L(x, y) reads

L(x, y) =
p(x, y)
q(x, y)

=
p(y|x)p(x)
p(x)q(y)

=
p(y|x)
q(y)

, (6)

and conditional expectations under Q can simply be taken with
respect to the prior probability p(x).

Please take a moment to appreciate the value of this idea: the
change of measure has allowed us to replace the expectation with
respect to the posterior p(x|y) of P (which might be hard to get)
with an expectation with respect to the prior p(x) of Q (which
might be easy to compute). This ‘trick’ will become the central
theme of this manuscript.

2.1.1. Importance sampling
A numerical example where a change of measure is directly

used is importance sampling. Here, the goal is to approximate
expectations with respect to a distribution p(x) (under P) by using
M empirical samples X (i)

∼ p(x), such that

EP[φ(X)] ≈
1
M

M∑
i=1

φ(X (i)). (7)

However, there might be situations where we cannot draw sam-
ples from p(x), but only from another distribution q(x) (under Q).
Thus, we first perform a change of measure to Q, and then use
the samples X (i)

∼ q(x) to approximate the expectation:

EP[φ(X)] = EQ[L(X)φ(X)] ≈
1
M

M∑
i=1

L(X (i))φ(X (i)). (8)

In this context, the likelihood ratio L(X (i)) =
p(X (i))
q(X (i))

=: w(i)

is referred to as (unnormalized) importance weight. Hence, the
target distribution p(x) is jointly represented by the density of
empirical samples (or ‘particles’), i.e. how many samples can
be found in a specific interval in the state space, and by their
respective importance weights (see simple example in Fig. 1).

Similarly, we can use importance sampling to approximate
a posterior expectation EP[φ(X)|Y ] with samples from the prior
distribution p(x). For this, consider changing to a measure Q with
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Fig. 2. (a) A two-state HMM with binary observation channel. α and β denote the probability to stay in state 0 and 1, respectively. The probability of making an
error in the observation channel is given by δ. (b) Sample state trajectory, sample observation and filtered density p̂tn (color intensity codes for the probability to be
in state 1), as well as estimated state trajectory X̂tn (where X̂tn = 1 if p̂(2)tn > 1/2 and X̂tn = 0 otherwise). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

density q(x, y) = p(x)q(y), such that with the likelihood ratio in
Eq. (6) we find

EP[φ(X)|Y ] =
EQ[L(X, Y )φ(X)|Y ]

EQ[L(X, Y )|Y ]
≈

1
Z

M∑
i=1

p(Y |X (i))φ(X (i))

=
1
Z

M∑
i=1

w(i)φ(X (i)), X (i)
∼ p(x) (9)

where the unnormalized importance weights are given by w(i)
=

p(Y |X (i)), and the normalization Z is given by

Z =

M∑
i=1

p(Y |X (i)) =

M∑
i=1

w(i). (10)

Thus, in order to approximate a posterior with empirical samples
from the prior, each sample X (i)

∼ p(x) has to be weighted
according to how likely it is that this particular sample has gen-
erated the observed value of the random variable Y by evaluating
the likelihood p(Y |X (i)) for this sample. Generalizing this to a
dynamical inference setting will give rise to the bootstrap particle
filter, and we will show in Section 6 how changing the measure in
empirical sampling for a dynamical system results in dynamical
equations for the particles and weights.

2.2. Filtering in discrete time - an introductory example

The inference problems in the previous section were of purely
static nature.2 However, this being the Hitchhiker’s guide to
nonlinear filtering, let us now start to consider dynamical models
for filtering.

Filtering means computing the conditional distribution of the
hidden state Xt at time t using the observations up to that time
Y0:t = {Y0, . . . , Yt}. There are two important ingredients to this
problem: first, the signal model describes the dynamics of the
hidden state Xt . In order to perform the inference recursively,
the usual minimum assumption for the hidden, or latent, state
process Xt with state space S is that it is a first-order Markov
process, which, roughly speaking, means that the (probability of
the) current state just depends on the last state, rather than on
the whole history. In discrete time,3 we can write more formally

p(Xtn |Xt0:n−1 ) = p(Xtn |Xtn−1 ). (11)

Thus, the dynamics of the whole process is captured by the tran-
sition probability p(Xtn |Xtn−1 ), which is assumed to be known.

2 If you ask yourself why we needed 4 pages to get to this point, please bear
with us: the concept of changing the measure is very straightforward in a static
setting, and might help to grasp the (seemingly) more complicated applications
in a dynamic setting later on.
3 In discrete time tn = n∆t .

Second, the observation model describes the (stochastic) gen-
eration of the observation process Ytn , and is captured by the
emission probability p(Ytn |Xtn ), which is also assumed to be
known. Together, the transition and emission probability form a
so-called state space model (SSM).4 With these ingredients, the
filtering problem in discrete time reduces to a simple application
of Bayes’ rule (Eq. (1)) at each time step, which may be written
recursively:

p(Xtn |Y0:tn ) =
p(Ytn |Xtn )p(Xtn |Y0:tn−1 )

p(Ytn |Y0:tn−1 )
(12)

=
p(Ytn |Xtn )

∫
S dxtn−1 p(Xtn |xtn−1 )p(xtn−1 |Y0:tn−1 )∫

S dxtn p(Ytn |xtn )
∫
S dxtn−1 p(xtn |xtn−1 )p(xtn−1 |Y0:tn−1 )

. (13)

The simplest dynamic model for filtering is a Hidden Markov
Model (HMM). To see that you do not need rocket science for
hitchhiking and applying Eq. (13), let us consider an HMM with
two hidden states and two observed states, i.e. Xtn and Ytn can
take values of 0 or 1 for each time tn. The transition probabilities
for Xtn are given by

p(Xtn = 0|Xtn−1 = 0) = α, p(Xtn = 1|Xtn−1 = 1) = β. (14)

Thus, α is the probability of staying in state 0, whereas β is the
probability of staying in state 1, and leaving those states has to
have probability 1−α and 1−β , respectively, where we assume
that α, β ∈ (0, 1) such that each state is visited. This can be
represented by a matrix.5

P⊤
=

(
α 1 − β

1 − α β

)
, (15)

which recursively determines the distribution of the hidden
Markov chain at each time: if ptn−1 = (p(1)tn−1

, p(2)tn−1
)⊤ is a two-

dimensional vector, denoting probability of state occupancy at
time tn−1, i.e. p

(1)
tn−1

= P(Xtn−1 = 0) and p(2)tn−1
= P(Xtn−1 = 1),

the corresponding vector at time tn is given by

ptn = P⊤ptn−1 . (16)

In our example, the emission probabilities of Y are given by a
binary symmetric channel (random bit flip) with error probability
0 < δ < 1

p(Ytn = 1|Xtn = 0) = δ, p(Ytn = 0|Xtn = 1) = δ. (17)

The structure of this model is depicted in Fig. 2a.

4 Somewhat oddly, the name ‘state space model’ usually refers to a model
with continuous state space, i.e. Xt ∈ Rn , which is distinct from models with
finite state space such as the Hidden Markov Model below. In this tutorial, the
state space can both be discrete or continuous, and if necessary, will be further
clarified in the text.
5 Here P⊤ is used to denote the transpose of the matrix P . It will become

clear later why we define the transition matrix as P⊤ .



A. Kutschireiter, S.C. Surace and J.-P. Pfister / Journal of Mathematical Psychology 94 (2020) 102307 5

For filtering, we can directly apply Eq. (13), and since the state
space is discrete, the integral reduces to a sum over the possible
states 0 and 1. Thus, Eq. (13) may be expressed as

p(Xtn |Yt0:tn ) =: p̂tn =
diag(e(Ytn ))P

⊤p̂tn−1

e(Ytn )⊤P⊤p̂tn−1

, (18)

where diag(v) is a diagonal matrix with the vector v along the
diagonal and e is a vector encoding the emission likelihood:

e(Ytn ) =

(
p(Ytn |Xtn = 0)
p(Ytn |Xtn = 1)

)
. (19)

Fig. 2b shows a sample trajectory of the hidden state Xtn , the
corresponding observations Ytn as well as the filtered probabilities
ptn and the estimated state X̂tn . Even though what is presented
here is a very simple setting (discrete time and finite number of
states), it illustrates nicely that the filter takes into account both
the dynamics of the hidden states as well as the reliability of the
observations.

2.3. Continuous (state) space

Remarkably, in the previous example the filtering problem
could be solved in closed form because it was formulated in
discrete time for a discrete state space. We will now continue
our journey towards more complex filtering problems involving
a continuous state space. For this, we have to go back to Eq. (13),
which is actually the filtering recursion for any state space. While
being straightforward to write down — is it possible to solve it in
closed form? Depending on the specific transition and emission
densities, the integrals in Eq. (13) might not admit a closed-form
solution. In fact, this is almost always the case! Except. . .

2.3.1. The Kalman filter
. . . if the transition and emission probabilities are Gaussians

and linear, i.e.

p(Xtn |Xtn−1 ) = N
(
Xtn; AXtn−1 ,Σx

)
, (20)

p(Ytn |Xtn ) = N
(
Xtn; BXtn ,Σy

)
, (21)

where we consider Xtn ∈ Rk and Ytn ∈ Rl to be vector-valued
random processes. Further, A ∈ Rk×k and B ∈ Rl×k are the
transition and emission matrices, respectively, and Σx ∈ Rn×n

and Σy ∈ Rl×l are state and observation noise covariances,
respectively.

Let us assume that at time tn−1 the posterior is given by a
Gaussian

p(Xtn−1 |Y0:tn−1 ) = N (Xtn−1;µtn−1 ,Σtn−1 ). (22)

We can immediately plug Eqs. (20) and (21) together with this
assumption into Eq. (13). After a bit of tedious but straightfor-
ward algebra (see Bishop, 2006, Section 13.3.1), we find that the
posterior is also a Gaussian N (Xt;µtn ,Σtn ). The famous Kalman
filter equations give us update rules for its mean and variance:

µtn = Aµtn−1 + Kt (Ytn − BAµtn−1 ), (23)

Σtn = (I − KtB)Σ̃tn−1 , (24)

where Σ̃tn−1 = AΣtn−1A
⊤

+ Σx is the covariance matrix of
p(Xt |Y0:tn−1 ), obtained after performing the marginalization over
the state transition. The so-called Kalman gain Kt is given by

Kt = Σ̃tn−1B
⊤(BΣ̃tn−1B

⊤
+Σy)−1. (25)

The immediate implication of this result is that for this partic-
ular model, given that the initial distribution is a Gaussian, the
posterior stays Gaussian at all times.

2.3.2. Particle filtering in discrete time
In those cases where transition and emission probabilities are

not Gaussian, we cannot expect Eq. (13) to take an analytically
accessible form. In other words: as time goes by (in terms of time
steps n), we will have to keep track of an ever-growing amount
of integrals, which is clearly not desirable. Alternatively, we can
try to approach this task numerically, by considering empirical
samples and propagating these samples through time to keep
track of this posterior. This idea is the very basis of particle filters
(PF).

The only remaining problem is that direct sampling from the
true posterior is usually not possible. In Section 2.1.1 we have
motivated importance sampling for a static setting from a change
of measure perspective, and we will now use the same reason-
ing to motivate sequential importance sampling. In other words:
we will replace samples from the true posterior (under P) by
weighted samples from a proposal density under Q. Importantly,
a ‘sample’ i here refers to a single realization of the whole path
X0:tn = {X0, . . . , Xtn}, and the measure change needs to be done
with respect to the whole sequence of state and observations.

Let us first note that the posterior expectation can be under-
stood as an expectation with respect to the whole sequence

EP
[
φ(Xtn )|Y0:tn

]
=

∫
S
dxtn φ(xtn )p(xtn |Y0:tn )

=

∫
S
dx0:tn φ(xtn )p(x0:tn |Y0:tn ), (26)

where in the last step we simply used that
∫
S dx0:tn−1p(x0:tn−1 |Y0:tn )

= 1. Now, we perform the measure change according to Eq. (5):

EP
[
φ(Xtn )|Y0:tn

]
=

EQ[L(X0:tn , Y0:tn )φ(Xtn )|Y0:tn ]

EQ[L(X0:tn , Y0:tn )|Y0:tn ]
, (27)

with

L(x0:tn , y0:tn ) =
p(x0:tn , y0:tn )
q(x0:tn , y0:tn )

=
p(x0:tn |y0:tn )p(y0:tn )
q(x0:tn |y0:tn )q(y0:tn )

, (28)

where p and q denote densities of P and Q, respectively.
Let us now choose the measure Q such that the conditional

density q(x0:tn |y0:tn ) factorizes, i.e.

q(x0:tn |y0:tn ) =

n∏
j=0

π (xtj |x0:tj−1 , y0:tj )

= π (xtn |x0:tn−1 , y0:tn )q(x0:tn−1| |y0:tn−1 ). (29)

Further, we can rewrite the conditional density p(x0:tn |y0:tn ) using
the structure of the SSM

p(x0:tn |y0:tn )

=
p(ytn |x0:tn , y0:tn−1 )p(x0:tn |y0:tn−1 )

p(ytn |y0:tn−1 )

=
p(ytn |x0:tn , y0:tn−1 )p(xtn |x0:tn−1 , y0:tn−1 )

p(ytn |y0:tn−1 )
p(x0:tn−1 |y0:tn−1 )

=
p(ytn |xtn )p(xtn |xtn−1 )

p(ytn |y0:tn−1 )
p(x0:tn−1 |y0:tn−1 ). (30)

Thus, using that all factors independent of the state variable
x can be taken out of the expectations in Eq. (28) and cancel
subsequently, we find

L(x0:tn , y0:tn ) ∝
p(ytn |xtn )p(xtn |xtn−1 )
π (xtn |x0:tn−1 , y0:tn )

p(x0:tn−1 |y0:tn−1 )
q(x0:tn−1| |y0:tn−1 )

∝
p(ytn |xtn )p(xtn |xtn−1 )
π (xtn |x0:tn−1 , y0:tn )

L(x0:tn−1 , y0:tn−1 ). (31)

In analogy to Section 2.1.1, we now take M i.i.d. samples
from the proposal density, i.e. we sample X (i)

0:tn ∼ q(X0:tn |Y0:tn ),
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and weigh them according to the value of the likelihood ratio
evaluated at the particle positions (cf. Eq. (9)). Since the pro-
posal in Eq. (29) was chosen to factorize, both the sampling
process as well as the evaluation of the unnormalized importance
weights w(i)

tn (according to Eq. (31)) can be done recursively. More
specifically, the problem of sampling (and weighing) the whole
sequences X (i)

0:tn is replaced by sampling just a single transition
X (i)
tn for each of the M particles at each time step n and updating

the associated particle weights.

X (i)
tn ∼ π (Xtn |X

(i)
0:tn−1

, Y0:tn ), (32)

w
(i)
tn = L(X (i)

0:tn , Y0:tn ) = w
(i)
tn−1

p(Ytn |X
(i)
tn ) p(X

(i)
tn |X (i)

tn−1
)

π (X (i)
tn |X (i)

0:tn−1
, Y0:tn )

, (33)

such that the posterior expectation is approximated by

EP
[
φ(Xtn )|Y0:tn

]
=

1
Ztn

M∑
i=1

w
(i)
tn φ(X

(i)
tn ), (34)

with Ztn =
∑P

i=1w
(i)
tn .

A simple (but not necessarily efficient) choice is to use the
transition probability p(Xtn |Xtn−1 ) as the proposal function in
Eq. (32). Then, computation of the unnormalized weights simpli-
fies to

w
(i)
tn = w

(i)
tn−1

p(Ytn |X
(i)
tn ). (35)

This scheme is the basis of the famous Bootstrap PF (BPF, Gordon,
Salmond, & Smith, 1993).6 Doucet, Godsill, and Andrieu (2000)
state that the BPF is ‘‘inefficient in simulations as the state space
is explored without any knowledge of the observations’’. To ac-
count for this, alternative proposal densities can be crafted in
discrete time, which may take into account the observations in
the particle transitions (e.g. the ‘optimal proposal’ in Doucet et al.,
2000).

3. Knowing where your towel is: setting the stage for
continuous-time models

‘‘A towel is about the most massively useful thing an interstellar
hitchhiker can have.
Partly it has great practical value. More importantly,
a towel has immense psychological value’’.

[Douglas Adams]

So far, we have made our journey from Bayes’ theorem to
discrete-time filtering, first for discrete state spaces and then
made the transition towards continuous state space models. The
next logical step would be the transition to continuous time
models. In the following three sections, we will see that the
mindset is very similar to the approaches taken before, just in
their respective continuous-time limit, i.e. dt = tn − tn−1 → 0. In
particular, we will use the change of measure approach to derive
the filtering equations, i.e. dynamical equations for the posterior
expectations E[φ(Xt )|Y0:t ] or, equivalently, the posterior density
p(Xt |Y0:t ).

But let us take a step back here and first explain the model
assumptions under which we will present continuous-time filter-
ing theory. For the purpose of this tutorial, we have seen that a
generative model consists of two parts:

6 Although technically, the BPF requires a resampling step at every iteration
step.

1. A signal model or hidden process model that describes
the dynamics of some system whose states we want to
estimate. In continuous-time, we will consider two very
general classes of signal model, namely continuous-time
Markov chains (countable or finite state space) and jump–
diffusion processes (continuous state space).

2. An observation model that describes how the system gen-
erates the information that we can observe and utilize
in order to estimate the state. We will elaborate the fil-
tering theory for two types of observation noise, namely
continuous-time Gaussian noise and Poisson noise.

3.1. Signal models

As in Section 2, we will restrict ourself to the treatment of
Markovian processes for the signal, i.e. p(Xt |X0:t−dt ) = p(Xt |Xt−dt ).
Our goal in this subsection will be to obtain dynamical equations
that fully describe the signal process.

3.1.1. Markov chain
An important example is when Xt is a continuous-time time-

homogeneous Markov chain with a finite number of states, i.e. S=
{1, . . . ,m}. In this case we may represent the function φ : {1, . . . ,
m} → R as a vector φ = (φ(1), . . . , φ(m))⊤ and we have
a transition probability matrix P(t)⊤. The entry Pji(t) gives the
probability of going from state j to state i within a time interval
of length t , so it is a time-dependent generalization of Eq. (15).
This allows us to compute the distribution at time t , p(t) from the
initial distribution p(0) as p(t) = P(t)⊤p(0). We therefore have
two equivalent ways of computing the expectation of φ:

E[φ(Xt )] = p(t)⊤φ
= p(0)⊤P(t)φ = p(0)Tφ(t). (36)

In the first one, the observable is fixed while the distribution
changes as a function of time, while in the second, the distribu-
tion is fixed to the initial distribution, and the observable evolves
in time, i.e. φ(t) = P(t)φ.

By differentiating with respect to time, we obtain differential
equations for the distribution p(t) and the observable φ(t),

φ̇(t) = Ṗ(t)φ, (37)
ṗ(t) = Ṗ(t)⊤p(0). (38)

The Markov property ensures that P(t + s) = P(t)P(s) = P(s)P(t).
Further, since P(0) = I is the unit matrix,7 the time derivative of
the matrix P(t) can be simplified to

Ṗ(t) = lim
s→0

P(t + s) − P(t)
s

= P(t) lim
s→0

P(s) − I
s

= P(t)Ṗ(0). (39)

We denote A = Ṗ(0) and then get

φ̇(t) = Aφ(t), (40)
ṗ(t) = A⊤p(t). (41)

Equivalently, we find for the time derivative of the expectation
d
dt

E[φ(Xt )] = p(0)⊤Ṗ(t)φ = p(t)⊤Aφ = E[Aφ]. (42)

So conceptually, the whole temporal evolution of the stochastic
process Xt is encapsulated in the matrix A, the so-called gener-
ator matrix. In other words, the generator matrix, together with
the initial distribution, is all we need to completely characterize
the Markov chain.

7 Because p(t = 0) = P(0)⊤p(0) is only fulfilled if P(0) = I.
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Fig. 3. Example trajectories from Eq. (43). Shading denotes density of 10’000 simulated trajectories. (a) Drift–diffusion process (f (x) = 1,G(x) = 1, J(x) = 0). (b) Jump
process (f (x) = 0,G(x) = 0, J(x) = 1) with rate λ(x) = 1. c.) Jump–diffusion process (f (x) = 1/2,G(x) = 1/2, J(x) = 1) with rate λ(x) = 1/2.

3.1.2. Jump–diffusion process
Intuitively, in order to make the transition to a continuous

state space, we have to exchange ‘‘sums by integrals and ma-
trices by linear operators’’. We will now see that this holds for
the hidden state dynamics by characterizing a continuous-time
stochastic process with continuous state space S similarly to
Eqs. (41) and (42).

An important signal model, which is a generalization of the
classical diffusion model in continuous time, is a hidden state Xt
that is a jump–diffusion process, i.e. it evolves according to a
stochastic differential equation (SDE) in S = Rn,

dXt = f (Xt , t) dt + G(Xt , t) dWt + J(Xt , t)dNt . (43)

Here, f : Rn
× R → Rn, G : Rn

× R → Rn×m, and J :

Rn
× R → Rn×k are called the drift, diffusion, and jump co-

efficients of Xt , respectively. The process noise is modeled by
two types of noise sources: Wt ∈ Rm is a vector Brownian
motion that models white Gaussian noise in continuous time, and
we may consider dWt ∼ N (0, Im×mdt). Nt is a k-dimensional
point process with k-dimensional rate (or intensity) vector λ(Xt ),
i.e. dN i

t ∼ Poisson(λi(Xt )dt). Note that dN i
t takes only values 0 or

1, because in the limit dt → 0, the Poisson distribution becomes
a Bernoulli distribution. In Fig. 3, we show example trajectories
from Eq. (43), one being a drift–diffusion (where the jump term
vanishes), one being a pure jump process, and the last one being
a jump–diffusion process.

Dealing with this type of SDE model is considerably more
technical than the Markov chains above. Therefore, we will out-
line the theory of diffusion processes for readers who are new
to them. Unless stated otherwise, derivations presented here
roughly follow Bremaud (1981) and Gardiner (2009).

We can choose to describe the process in terms of transition
probability densities p(x, t|x′, s), which give the probability den-
sity at a point x ∈ Rn at time t conditioned on starting at a point

x′
∈ Rn at time s < t . This transition density can be combined

with the initial density p0(x′) by integrating in order to compute
an expectation:

E[φ(Xt )] =

∫∫
φ(x)p(x, t|x′, 0)p0(x′) dx dx′

=

∫
φ(x)p(x, t) dx, (44)

in complete analogy with the vector–matrix–vector product for
the Markov chains in Eq. (36). Taking this analogy further, differ-
entiating with respect to time gives rise to two different (equiv-
alent) ways of writing the time evolution of the expected value:
d
dt

E[φ(Xt )] =

∫
φ(x)∂tp(x, t) dx

=

∫
φ(x)A†p(x, t) dx

=

∫
Aφ(x)p(x, t) dx, (45)

where in analogy to Eq. (42) we have introduced the adjoint
operator A† that describes the time evolution of the probability
density. Thus, in analogy to Eq. (37) we can set out to find
the appropriate form of the infinitesimal generator A, which
generalizes the generator matrix A of the Markov chain, and then,
by integration by parts, we may derive the corresponding adjoint
operator A†.

Itô lemma for jump diffusions. The form of the generator A can be
obtained by changing the variables in Eq. (43) from the random
variable Xt to the random variable φt := φ(Xt ). The following
calculation will be performed for a scalar process Xt .8 Consider

8 Generalization to a multivariate state process Xt is straightforward.



8 A. Kutschireiter, S.C. Surace and J.-P. Pfister / Journal of Mathematical Psychology 94 (2020) 102307

an infinite Taylor expansion of its increment dφt around dXt = 0
up to O(dt):

dφt = φ(Xt + dXt ) − φ(Xt )

=

∞∑
n=1

1
n!
φ

(n)
t (dXt )n, (46)

with φ(n)
t :=

(
∂nx φ(x)

)
|x=Xt .

In a deterministic differential, Taylor-expanding up to first or-
der would suffice since dtn = 0 ∀n > 1. In Eq. (43), the additional
stochastic terms add additional orders of dt . Particularly, since
the variance of the Brownian motion process grows linearly in
time, we have dW 2

t = dt , and thus the diffusion term has to be
expanded up to second order. For the jump term, all order up
to infinity have to be considered: indeed, Nt is not a continuous
process, and elicits jumps of always size 1 irrespectively of the
infinitesimally small time interval dt . Therefore, any power of this
jump will have the same magnitude, i.e. dNn

t = dNt , ∀n. Thus, we
find for a scalar process

dφt =

[
f (Xt , t)φ′

t +
1
2
G2(Xt , t)φ′′

t

]
dt + G(Xt , t)φ′

t dWt

+

∞∑
n=1

1
n!

Jn(Xt , t)φ
(n)
t dNt

=

[
f (Xt , t)φ′

t +
1
2
G2(Xt , t)φ′′

t

]
dt

+ [φ (Xt + J(Xt ))− φ(Xt )] λ(Xt )dt
+ G(Xt , t)φ′

t dWt + [φ (Xt + J(Xt ))− φ(Xt )]
×
(
dNt − λ(Xt )dt

)
=: Aφt dt + dMφ

t .

(47)

This formula is called Itô’s lemma. In the last step, we have
defined

Aφt = f (Xt , t)φ′

t +
1
2
G2(Xt , t)φ′′

t

+ λ(Xt )(φ (Xt + J(Xt ))− φ(Xt )), (48)
dMφ

t = G(Xt , t)φ′

t dWt + [φ (Xt + J(Xt ))− φ(Xt )]

×
(
dNt − λ(Xt )dt

)
, (49)

where A is the infinitesimal generator of the stochastic process
Xt . The stochastic process Mφ

t is a so-called martingale9 and the
contribution from its increment vanishes upon taking expecta-
tions, i.e. E[dMφ

t ] = 0. Thus, taking expectations on both sides of
Eq. (47) we find indeed
d
dt

E[φ(Xt )] = E[Aφ(Xt )], (50)

which is the continuous state space analogue to Eq. (42).
The multivariate version is completely analogous:

dφ(Xt ) = Aφ(Xt )dt + dMφ
t ,

where now the infinitesimal generator of the stochastic process
is given by

Aφ(x) =

n∑
i=1

fi(x, t)∂xiφ(x) +
1
2

n∑
i,j=1

(
GG⊤(x, t)

)
ij∂xi∂xjφ(x)

+

k∑
i=1

λi(x)
[
φ
(
x + Ji(x, t)

)
− φ(x)

]
,

(51)

9 Loosely speaking, a martingale is a sequence of random variables, whose
conditional expectation in the next time step is equal to the value of the random
variable at the current time step.

and the martingale part reads

dMφ
t =

n∑
i=1

m∑
j=1

Gij(Xt , t)(∂xiφ(x)|x=Xt )dW
j
s

+

k∑
i=1

[φ (Xt + Ji(Xt ))− φ(Xt )]
(
dN i

t − λi(Xt )ds
)
.

(52)

The generator A, just like the generator matrix A of the Markov
chain, together with the initial distribution, completely charac-
terizes the Markov process and allows us to describe its time
evolution on an abstract level. Or in other words: even though the
particular form of A might be different for each of these models
presented here, the structure of the mathematics remains the
same, and can therefore be generalized to arbitrary A when the
need arises.

The evolution of the probability density. With the explicit form
in Eq. (51) of the generator A, we can go back to Eq. (45) and
perform the integration by parts to find the adjoint operator A†,
which will take the role of A⊤ in the Markov chain case.

Plugging Eq. (51) into Eq. (45), we obtain∫
Rn

Aφ(x)p(x, t)dx

=

n∑
i=1

∫
Rn

fi(x, t)(∂xiφ(x))p(x, t)dx

+
1
2

n∑
i,j=1

∫
Rn

(
GG⊤(x, t)

)
ij(∂xi∂xjφ(x))p(x, t)dx

+

k∑
i=1

∫
Rn
λi(x)

[
φ
(
x + Ji(x, t)

)
− φ(x)

]
p(x, t)dx. (53)

The first two integrals can be dealt with by ordinary integration
by parts,10 i.e.∫
Rn

fi(x, t)(∂xiφ(x))p(x, t)dx = −

∫
Rn
φ(x)

[
∂xi fi(x, t)p(x, t)

]
dx, (54)

and∫
Rn

(
GG⊤(x, t)

)
ij(∂xi∂xjφ(x))p(x, t)dx

=

∫
Rn
φ(x)∂xi∂xj

[(
GG⊤(x, t)

)
ijp(x, t)

]
dx.

(55)

For the third integral in Eq. (53), we perform a change of variables
x ↦→ x+ Ji(x, t) (where we assume the integral boundaries are not
affected by the substitution), thereby obtaining∫
Rn
λi(x)

[
φ
(
x + Ji(x, t)

)
− φ(x)

]
p(x, t)dx

=

∫
Rn
φ(x)

[
λi(x − Ji(x, t))p(x − Ji(x, t), t)

× det
∂(J1i, . . . , Jji)
∂(x1, . . . , xj)

− λi(x)p(x, t)
]
dx, (56)

where det ∂(J1i,...,Jji)
∂(x1,...,xj)

denotes the Jacobi determinant of the entries
of the column vector Ji. Combining all of these integrals (including
the sums) and comparing with Eq. (45), we can therefore read off

10 Here, we make the assumption that the density p(x, t) and all its derivatives
vanish at infinity.
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the form of the adjoint operator:

A†p(x, t) =

n∑
i=1

∂xi

[
fi(x, t)p(x, t)

]
+

1
2

n∑
i,j=1

∂xi∂xj

[(
GG⊤(x, t)

)
ijp(x, t)

]

+

k∑
i=1

[
λi(x − Ji(x, t))p

(
x − Ji(x, t), t

)
× det

∂(J1i, . . . , Jji)
∂(x1, . . . , xj)

− λi(x)p(x, t)
]
.

(57)

Using Eq. (45) once more, we find the evolution equation for the
density p(x, t):

∂tp(x, t) = A†p(x, t). (58)

If we leave out the jump terms, this is called the Fokker–Planck
equation or Kolmogorov forward equation. With the jump terms,
it is often referred to as the Master equation.

3.2. Observation model

In the previous section, we have encountered various signal
models, which are the processes we want to infer. The knowledge
about how these processes evolve in time, formally given by the
generator A, serves as prior knowledge to the inference task.
Equally important, we need measurements, or observations, to
update this prior knowledge. In particular, an observation model
describes how the signal gets corrupted during measurement.
This may comprise both a lossy transformation (e.g. only certain
components of a vector-valued process are observed), and some
stochastic additive noise that randomly corrupts the measure-
ments. Roughly speaking, the measurements Yt are given by

Yt = h(Xt ) + noise,

but we will need to be careful about the precise way in which the
noise is added in order to make sense in continuous time.

In the following, we will consider two types of noise: Gaussian
and Poisson. The simplicity of noise of these two noise models
greatly simplifies the formal treatment of the filtering problem,
and while the two types of noise seem very different, there is a
common structure that will emerge.

When considering more general noise models than the ones
below, the technique of Section 4 (change of measure) can be
applied whenever the observation noise (whatever is added to
the deterministic transformation) is additive and independent of
the hidden state.

3.2.1. Continuous-time Gaussian noise
The simplest noise model is often white Gaussian noise. For

continuous-time observations, however, one cannot simply take
an observation model Yt = h(Xt )+ηt with independent Gaussian
ηt because for a reasonably well-behaved process Xt , an integra-
tion of Yt over a finite time interval would completely average
out the noise and therefore allow one to perfectly recover the
transformed signal h(Xt ).11 The filtering problem would therefore
be reduced to simply inverting h.

One way of resolving the problem of finding a (nontrivial)
model of white Gaussian noise is to switch to a differential form

11 If the observations are made at discrete times t1, t2, . . . , this is not
problematic. Filtering of a continuous-time hidden process with discrete-time
observations is reviewed in Jazwinski (1970, p. 163ff). If the observation model
in Eq. (59) is discretized, one gets back to a discrete-time observation model
with Gaussian noise.

and use increments of the Wiener process as a noise term. One
therefore obtains an SDE for the observation process Yt :

dYt = h(Xt , t) dt +Σy(t)1/2 dVt . (59)

Here, h : Rn
× R → Rl is a vector-valued function that links

the hidden state (and time, if time-dependence is explicit) with
the deterministic drift of the observations. Further, Vt ∈ Rl is a
vector Brownian motion process and Σy(t) : R → Rl×l is the
time-dependent observation noise covariance.

In the standard literature, one usually finds the special case
Σy = Il×l, which is equivalent to Eq. (59) if the increment of the
observation process Yt is rescaled accordingly:

dỸt = Σy(t)−1/2dYt = h̃(Xt , t) dt + dVt , (60)

where h̃(x, t) = Σy(t)−1/2h(x, t) is the rescaled observation func-
tion.

3.2.2. Poisson noise
In many fields, observations come in the form of a series

of events. Examples include neuroscience (neural spike trains),
geoscience (earthquakes, storms), financial transactions, etc. This
suggests a point process (whose output is a series of event times)
or counting process (which counts the number of events) obser-
vation model. A simple, but versatile, model for events is a Pois-
son process Nt with time-varying and possibly history-dependent
intensity. As an observation model, this doubly-stochastic Poisson
process (also known as Cox process, Cox 1955) has an intensity
that depends on its own history as well as the hidden state. We
can informally write this as

dN i
t ∼ Poisson

(
Ri
t dt
)
, i = 1, . . . , l (61)

where the intensity processes Ri
t are nonnegative processes that

can be computed from the current value of Xt and the history of
observations N0:s for s < t .

To keep the notation simple, we will assume that the vector
Rt of intensities is given by a function of the hidden state,

Rt = h(Xt ), (62)

but history-dependence in the form Rt = h(Xt ,N0:t− ) does not
significantly increase the difficulty of the filtering (given the
observation, any history-dependence of the intensity is determin-
istic and can be factored out of the conditional expectation of the
intensity).

4. The answer to life, the universe and (not quite) everything:
the filtering equations

‘‘I’ve just been created. I’m completely new to the Universe in all
respects.
Is there anything you can tell me?’’

[Douglas Adams]

The filtering problem is to compute the posterior (or con-
ditional) density of the hidden state conditioned on the whole
sequence of observations up to time t , Y0:t , or equivalently, to
compute the posterior expectation (if it exists) of any real-valued
measurable function φ : Rn

→ R,

EP [φ(Xt )|Y0:t ] =

∫
∞

−∞

p(x|Y0:t )φ(x) dx =: ⟨φt⟩P , (63)

where we use subscript P to indicate expectations with respect
to the original probability measure P.

That this is not an easy problem should be clear by now,
because already the discrete-time filtering task (e.g. in Eq. (13))
involved a computation of as many integrals as there are time
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steps. In continuous time, this would amount to an infinite num-
ber of integrals. This continuous-time problem has already been
recognized and tackled by mathematicians in the 60s and 70s of
the last century, providing formal solutions for the posterior den-
sity in terms of stochastic partial differential equations (Kushner,
1962; Zakai, 1969). In the following, we will derive these equa-
tions, using what we have been using in the previous sections as
our ultimate ‘‘Point of View Gun for nonlinear filtering’’12: the
change of probability measure method.13

4.1. Changes of probability measure — once again

Let us once more revisit the change of probability measure
in the context of filtering. The goal is to pass from the original
probability measure P (under which the processes behave as our
signal and observation model dictates), to an equivalent measure
Q, called reference measure, under which the observation process
becomes simpler and decouples from the signal process. Here,
we will finally generalize our introductory treatment from Sec-
tion 2.1 to stochastic processes. Unsurprisingly, the calculations
are quite similar.

If P is a probability measure and we have a collection of
processes (Xt and Yt ), the measure Pt is the restriction of P to
all events that can be described in terms of the behavior of Xs
and Ys for 0 ≤ s ≤ t . If P and Q are equivalent, also their
restrictions Pt and Qt are equivalent.14 The Radon–Nikodym
theorem (Klebaner, 2005, Theorem 10.6, p. 272ff) then states that
a random variable Lt exists, such that for all functions φ

EP [φ(Xt )] = EQ [Lt · φ(Xt )] , (64)

where Lt =
dPt
dQt

is called the Radon–Nikodym derivative or
density of Pt with respect to Qt . This is the generalization of
Eq. (2) in Section 2.1.

In analogy to Eq. (64), also the conditional expectations can
then be rewritten in terms of a reference probability measure Q:

EP [φt |Y0:t ] =
EQ[φt Lt |Y0:t ]

EQ[Lt |Y0:t ]
=

1
Zt

⟨φtLt⟩Q . (65)

Eq. (65) is known as a Bayes’ formula for stochastic processes
(compare Eq. (5)) or Kallianpur–Striebel formula. Here, we re-
quire a time-dependent normalization Zt := EQ[Lt |Y0:t ], and
⟨φtLt⟩Q := EQ[φt Lt |Y0:t ] was introduced to keep the notation
concise. This generalizes Eq. (5).

But wait: what exactly does the Radon–Nikodym derivative
Lt look like? This really depends on the measure change we
are about to perform, but it helps to recall that in a discrete-
time (or actually already static) setting the equivalent of the
Radon–Nikodym derivative is nothing else than the ratio be-
tween two probability densities. For the filtering problem below,
we will choose a reference measure Q such that the path of
the observations Y0:t (or equivalently the set of the increments
dY0:t ) becomes independent of the path of the state process X0:t ,
i.e. q(X0:t , dY0:t ) = p(X0:t )q(dY0:t ). This is very convenient, as this
allows us to compute expectations with respect to the statistics
of the state process (and we know how to do that). Eq. (6) then

12 The Point of View Gun is a weapon that causes its target to see things from
the side of the shooter. Actually, it never appeared in any of Douglas Adams’
novels, but it was featured in the 2005 movie.
13 There are other methods to arrive at the same equations, for instance
the innovations approach (Bain & Crisan, 2009, Chpt. 3.7) or the more heuristic
continuum limit approach originally taken by Kushner (1962).
14 For stochastic processes, equivalence implies having the same noise
covariance.

directly tells us what the likelihood ratio has to look like for this
measure change:

L(x0:t , dy0:t ) =
p(dy0:t |x0:t )
q(dy0:t )

=

∏t
s=0 p(dys|xs)
q(dy0:t )

, (66)

where now x0:t and dy0:t are variables reflecting the whole path
of the random variable Xt and the set of infinitesimal increments
dY0:t . Importantly, this particular measure change is agnostic to
how the hidden state variable Xt evolves in time, but just takes
into account how the observations are generated via p(dyt |xt ).

Let us first consider Gaussian observation noise, as encoun-
tered in Section 3.2.1. From Eq. (59), we know that dYt ∼ N (dYt;

h(Xt )dt,Σydt). Further, we choose q(dYt ) = N (dYt; 0,Σydt) un-
der the reference measure Q. Thus, the Radon–Nikodym deriva-
tive Lt = L(X0:t , dY0:t ) can be written as

Lt =

∏t
s=0 p(dYs|Xs)∏t
s=0 q(dYs)

=

t∏
s=0

N (dYs; h(Xs)ds,Σyds)
N (dYs; 0,Σyds)

=

t∏
s=0

exp
[
h(Xs)⊤Σ−1

y dYs −
1
2
h(Xs)⊤Σ−1

y h(Xs)ds
]

limdt→0
= exp

[∫ t

0
h(Xs)⊤Σ−1

y dYs −
1
2
h(Xs)⊤Σ−1

y h(Xs)ds
]
, (67)

where in the last step we took the continuum limit limdt→0.
Consistently, we would have obtained this result if we had simply
(and mindlessly) applied a theorem called Girsanov’s theorem,
choosing the reference measure Q under which the rescaled
observations process Ỹt is a Brownian motion process (Klebaner,
2005, Chapter 10.3, on p. 274, in particular Remark 10.3).

Similarly, we can compute the Radon–Nikodym derivative for
observations corrupted by Poisson noise as in Eq. (61). Here, we
choose Q such that q(dN0:t ) is Poisson with a constant reference
rate λ0. The corresponding density reads

Lt =

t∏
s=0

l∏
i=1

p(dN i
s|Xs)

q(dN i
s)

=

∏
s,i

Poisson(dN i
s; hi(Xs)ds)

Poisson(dN i
s; λ0ds)

=

∏
s,i

exp
[
λ0ds − hi(Xs) ds + log

hi(Xs)
λ0

dN i
s

]
(68)

limdt→0
=

l∏
i=1

exp
[∫ t

0
(λ0 − hi(Xs)) ds + log

hi(Xs)
λ0

dN i
s

]
. (69)

Again, the same result could have been obtained with a Girsanov
theorem (see Bremaud, 1981, Chapter VI, Theorems T2 and T3).

4.2. Filtering equations for observations corrupted by Gaussian noise

We are now equipped with the necessary tools to tackle the
derivation of the filtering equations. Here, the derivation will be
briefly outlined (for a more detailed and formal derivation, see
Bain & Crisan, 2009; Van Handel, 2007).

As we stated in the beginning of this Section, we want to
find a convenient reference measure which decouples the signal
and observations and at the same time turns the observations
into something simple. Recall that the Radon–Nikodym derivative
(expressed for a rescaled observations process Ỹt = Σ

−1/2
y Yt with

h̃(x) = Σ
−1/2
y h(x)) then takes the form

Lt =
dPt

dQt
= exp

[∫ t

0
h̃(Xs)⊤dỸs −

1
2

∫ t

0

h̃(Xs)
2 ds

]
. (70)

which evolves according to the following SDE (see Appendix A.1
for calculation steps):

dLt = Lt h̃(Xt )⊤dỸt . (71)
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Under Q, the stochastic differential can be taken inside the
expectation (see Van Handel, 2007, Chapter 7, Lemma 7.2.7), and
we therefore obtain using Itô’s lemma15

dEP [φt |Y0:t ]

= d
(

1
Zt

⟨φtLt⟩Q

)
=

1
Zt

d ⟨φtLt⟩Q + ⟨φtLt⟩Q d
(

1
Zt

)
+ d ⟨φtLt⟩Q d

(
1
Zt

)
=

1
Zt

⟨d(φtLt )⟩Q + ⟨φtLt⟩Q d
(

1
Zt

)
+ ⟨d(φtLt )⟩Q d

(
1
Zt

)
, (72)

where introduced the short-hand notation EQ [·|Y0:t ] = ⟨·⟩Q for
the conditional expectation. We recall from Section 3 that for
both of the signal models, we may write the time evolution of
φt = φ(Xt ) as

dφt = Aφtdt + dMφ
t , (73)

where we denote Aφt = Aφ(Xt ). M
φ
t is a martingale that is

independent of the observations under Q, and thus
⟨
dMφ

t

⟩
Q

= 0

as well as
⟨
Lt dM

φ
t

⟩
Q

= 0. Therefore, we only retain the dt term
under the conditional expectation. The first term in Eq. (72) can
then be computed using Eq. (71):

⟨d(φtLt )⟩Q = ⟨(dφt ) Lt + φt (dLt ) + (dφt ) (dLt )⟩Q .

= ⟨LtAφt⟩Q dt +

⟨
φtLt h̃(Xt )⊤dỸt

⟩
Q
, (74)

which is the SDE of the unnormalized posterior expectation. Here
we further used that ⟨(dφt ) (dLt )⟩ = 0, because the noise in state
and observations are independent.

Note that the evolution equation of the normalization constant
Zt in Eq. (65), dZt = d ⟨Lt⟩Q, corresponds to Eq. (74) with the
constant function φ = 1. The differential dZ−1

t is obtained by
consecutive application of Itô’s lemma (Eq. (47)). By plugging
Eq. (74) and dZ−1

t into Eq. (72) and rewriting everything in terms
of expectations under P using Eq. (65), one finally obtains the
evolution equation for the posterior expectation, the so-called
Kushner–Stratonovich equation (KSE, Bain & Crisan, 2009, p. 68,
Theorem 3.30, cf. Appendix A.2 for calculation steps):

d ⟨φt⟩P = ⟨Aφt⟩P dt + covP(φt , h̃(Xt )⊤)(dỸt − ⟨h̃(Xt )⟩P dt). (75)

Equivalently, it can straightforwardly be expressed in terms of the
original observation process in Eq. (59):

d ⟨φt⟩P = ⟨Aφt⟩P dt + covP(φt , h(Xt )⊤)Σ−1
y (dYt − ⟨h(Xt )⟩P dt).

(76)

In analogy to the calculations in Section 3, one may also pass
from an evolution equation for the expectations to an adjoint
equation for the conditional probability density,

dp(x|Y0:t ) = A†p(x|Y0:t ) dt
+ p(x|Y0:t )(h(x) − ⟨h(Xt )⟩)⊤Σ−1

y (dYt − ⟨h(Xt )⟩ dt).(77)

Writing Eq. (75) and (77) in terms of the (adjoint of the)
infinitesimal generator of the signal process, allows us to use any
signal process for which A is known. For instance, if the signal
process is a Markov chain on a finite set S, the expression p(x|Y0:t )
can be interpreted as the vector of posterior probabilities p̂(t),

15 Recall that this corresponds to a Taylor expansion up to second order
(i.e. first order in dt , since O(dWt ) = dt1/2) for diffusion processes, which is
why we have to consider the product of differentials (product rule for stochastic
differentials).

with entries p̂i(t) denoting the probability to be in state i given all
observations up to time t . The generator A† is then represented
by the matrix A⊤ that has appeared in the evolution equation for
the prior density, Eq. (41). Specifically, p̂i(t), evolves as

dp̂i(t) =

n∑
j=1

A⊤

ij p̂j(t) dt

+ p̂i(t)(hi − hp̂(t))⊤Σ−1
y (dYt − hp̂(t) dt), (78)

where hi = h(i) ∈ Rl, i = 1, . . . , n and h is an l × n-matrix
whose columns are the hi’s. Eq. (78) is known as the Wonham
filter (Wonham, 1964), and it is a finite-dimensional SDE that
completely solves the filtering problem.

Eq. (77) is a stochastic integro-differential equation, known
as Kushner equation (KSE) (Kushner, 1962; Stratonovich, 1960),
and its solution is in general infinite-dimensional. This fundamen-
tal problem is easily illustrated by considering the time evolution
of the first moment, using φ(x) = x:

d⟨Xt⟩ = ⟨f (Xt )⟩ dt + covP(Xt , h(Xt )⊤)Σ−1
y (dYt − ⟨h(Xt )⟩P dt). (79)

For non-trivial (i.e. non-constant) observation functions h, any
moment equation will depend on higher-order moments due
to the posterior covariance between the observation function
h and the function φ, which effectively amounts to a closure
problem when f (x) is nonlinear. This is not surprising; even the
Fokker–Planck equation (58) (the evolution equation for the prior
distribution) presents such a closure problem. In some cases
(e.g. when using kernel or Galerkin methods), it is more conve-
nient to use the evolution equation of the unnormalized posterior
density ϱ(Xt |Y0:t ):

dϱ(x|Y0:t ) = A†ϱ(x|Y0:t ) dt + ϱ(x|Y0:t )h(x)⊤Σ−1
y dYt , (80)

which is a linear stochastic partial differential equation (SPDE),
the Zakai equation (named after Zakai, 1969).

In very rare cases, under specific signal and observation mod-
els, the moment equations close, e.g. in the Kalman–Bucy fil-
ter (Kalman & Bucy, 1961, see Section 4.3 below) or the Beneš
filter (Benes, 1981). Other finite-dimensional filters include the
Daum filter (Daum, 1986) for continuous-time processes and
discrete-time measurements. However, in most cases that occur
in practice, the KSE needs to be approximated using a finite-
dimensional realization. For instance, one could use the KSE as
a starting point for these approximations, e.g. Markov-chain ap-
proximation methods (Kushner & Dupuis, 2001) or projection
onto a finite-dimensional manifold (Brigo, Hanzon, & Le Gland,
1999; Brigo, Hanzon, & LeGland, 1998), which can be shown to
be equivalent to assumed density filtering (ADF), or Galerkin-type
methods with specific metrics and manifolds (see Armstrong &
Brigo, 2013). Other numerical algorithms associated with over-
coming the numerical burden of solving the Kushner or Zakai
equation rely on a Fourier approximation of the involved densi-
ties, and the fact that convolutions correspond to simple products
in Fourier space (Brunn, Sawo, & Hanebeck, 2006; Jia & Xin, 2010;
Mikulevicius & Rozovskii, 2000).

4.3. A closed-form solution for a linear model: Kalman–Bucy filter

In models where the hidden drift function f (X) and the ob-
servation function h(X) are linear, i.e. f (x) = Ax and h(x) = Bx,
and the initial distribution is Gaussian, there exists a closed-form
solution to the filtering problem. In this case, the KSE (Eq. (75))
closes with the second posterior moment Σt , i.e. the evolution
equation for Σt becomes independent of the observations pro-
cess, and the posterior density corresponds to a Gaussian with
time-varying mean µt and variance Σt . The dynamics of these
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parameters are given by the Kalman–Bucy filter (KBF, Kalman &
Bucy, 1961) and form a set of coupled SDEs:

dµt = Aµt dt +ΣtB⊤Σ−1
y

(
dYt − Bµt dt

)
, (81)

dΣt =

(
AΣt +ΣtA⊤

+Σx −ΣtB⊤Σ−1
y BΣt

)
dt. (82)

The posterior variance follows a differential Riccati equation and,
due to its independence from observations as well as from the
posterior mean, it can be solved offline.

4.4. Filtering equations for observations corrupted by Poisson noise

In analogy to the previous section, the formal solution to the
filtering problem with observations corrupted by Poisson noise
(Eq. (61)) can also be derived with the change of probability
measure method. We will very briefly outline the derivation,
referring to similarities to continuous-time derivations.16

The idea is again to make use of the Kallianpur–Striebel for-
mula (Eq. (65)) and to rewrite the posterior expectation under the
original measure EP[φt |N0:t ] in terms of an expectation under a
reference measure Q, under which hidden process Xt and obser-
vation process Nt are decoupled. Using a Girsanov-type theorem
for point processes (see Bremaud, 1981, Chapter VI, Theorems
T2 and T3), the measure is changed to the reference measure
Q under which all point processes have a constant rate λ0. The
Radon–Nikodym derivative reads (cf. Eq. 69)

Lt =

l∏
i=1

exp
(∫ t

0
log

hi(Xs)
λ0

dN i
s +

∫ t

0
(λ0 − hi(Xs)) ds

)
, (83)

which solves the SDE

dLt = Lt ·

l∑
i=1

(
hi(Xt )
λ0

− 1
)
(dN i

t − λ0dt). (84)

We can now repeat the calculations of the previous section. First,
we obtain

⟨d(φtLt )⟩Q = ⟨(dφt ) Lt + φt (dLt ) + (dφt ) (dLt )⟩Q (85)
= ⟨Aφt Lt⟩Q dt

+

⟨
φtLt ·

l∑
i=1

(
hi(Xt )
λ0

− 1
)⟩

Q

(dN i
t − λ0dt). (86)

Here, we used again that under Q, differentiation and expectation
can be interchanged.

Using φt = 1 gives us the evolution of the time-dependent
normalization Zt in the Kallianpur–Striebel formula (65). We
can use these, together with Itô’s lemma (Eq. (47)) to compute
dZ−1

t = d ⟨Lt⟩−1
Q , to obtain a point-process observations analogue

to the KSE for the normalized posterior estimate:17

d ⟨φt⟩P = d
(
Z−1
t ⟨Ltφt⟩Q

)
=

1
Zt

⟨d(φtLt )⟩Q + ⟨φtLt⟩Q d
(

1
Zt

)
+ ⟨d(φtLt )⟩Q d

(
1
Zt

)
= ⟨Aφt⟩P dt +

l∑
i=1

covP(φt , hi(Xt ))
⟨hi(Xt )⟩P

(
dN i

t − ⟨hi(Xt )⟩P dt
)

= ⟨Aφt⟩P dt
+ covP(φt , h(Xt )⊤) diag(⟨h(Xt )⟩P)

−1

× (dNt − ⟨h(Xt )⟩P dt) , (87)

16 A very detailed derivation is offered in Bremaud (1981, p. 170ff.) or, more
intuitively, in Bobrowski, Meir, and Eldar (2009, SI) and in Surace (2015, p. 41ff).
17 See Appendix A.3 for detailed derivation steps.

where diag(x) denotes a diagonal matrix with diagonal entries
given by the vector x. The adjoint form of this equation, i.e. the
evolution equation for the posterior density p(x|N0:t ), reads:

dp(x|N0:t ) = A†p(x|N0:t ) dt +

p(x|N0:t )
l∑

i=1

1
⟨hi(Xt )⟩

(hi(x) − ⟨hi(Xt )⟩)

× (dN i
t − ⟨hi(Xt )⟩ dt)

= A†p(x|N0:t ) dt +

p(x|N0:t ) (h(x) − ⟨h(Xt )⟩)⊤ diag (⟨h(Xt )⟩)−1

× (dNt − ⟨h(Xt )⟩ dt). (88)

Note the structural similarity to the Kushner equation (Eq. (77)):
it also relies on a Fokker–Planck term denoting the prediction,
and a correction term that is proportional to the posterior density,
the innovation dNt −⟨h(Xt )⟩ dt , as well as a local correction h(x)−
⟨h(Xt )⟩. The difference is that the observation noise covariance
Σy in the Kushner equation has been replaced by a diagonal
matrix whose components are proportional to the rate function
in each observable dimension. Considering that the observations
are Poisson processes, this is not surprising: for Poisson processes,
the variance is proportional to the instantaneous rate, and thus,
analogously, the correction term in this equation has a similar
proportionality.

Similarly, we find for the unnormalized posterior density
ϱ(x|N0:t ):

dϱ(x|N0:t ) = A†ϱ(x|N0:t ) dt+ϱ(x|N0:t )
1
λ0
(h(x) − λ0)

T (dNt−λ0dt).

(89)

Analogously to Eqs. (77) and (80), these equations are obtained by
integrating the equation for the unnormalized posterior estimate
(Eq. (86)) and the normalized posterior estimate (Eq. (87)) twice.

4.5. Down to Earth - an example from decision making

In this section, we have seen that the filtering equations can
be derived by changing from the original measure to a measure
under which the signal and observation processes are indepen-
dent. Interestingly, what we have seen here also gives us a recipe
of how to treat a filtering problem in general: all we need is a
characterization of the state dynamics in terms of the infinitesi-
mal generator A. Further, any information about the observations
is carried by the Radon–Nikodym derivative.

To illustrate this, let us consider the following example from
dynamical decision making. In order to make a decision that relies
on an unobserved, but dynamic, variable, animals have to be able
to integrate the (noisy) observations about this variable in a way
that discounts older evidence in favor of more recent evidence,
depending on the dynamics of the variable. In other words: they
have to do filtering. In Piet et al. (2018) an experimental paradigm
is considered where the hidden variable can be in one of two
states, i.e. Xt ∈ {S1, S2}, which switches states with a hazard
rate a and which influences the click rates r+ and r− of two
speakers. More precisely, whenever the system is in state S1,
speaker 1 will have click rate r+ and speaker 2 will have click
rate r−, and vice versa if the system is in state S2 (Fig. 4a).
Presented with clicks from these speakers, rats have to make a
decision about the state the environment is in at the end of the
trial. The optimal solution to the problem is then the filtering
distribution conditioned on the clicks at the end of the trial, and
the optimal decision corresponds to the state with the highest
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Fig. 4. A hidden Markov model with point process observations as an example for a dynamical decision making paradigm. (a) Schematic of the HMM underlying
the experiments in Piet et al. (2018). (b) Logarithm of the likelihood ratio αt , which serves as the decision variable, as a function of time. The sign of the decision
variable at the end of the trial denotes the optimal decision.

posterior probability. This study has shown that rats are able to
perform optimal evidence discounting.18

To come up with the solution for the filtering task, Piet et al.
(2018) consider the evolution of the log-likelihood as the deci-
sion variable (based on Veliz-Cuba et al., 2016) and derive this
by taking the continuum-limit of the discrete-time process. In
principle, this approach is perfectly equivalent to a change of
measure in the log domain. Here, we will re-derive their result
for the optimal solution of the filtering task by directly applying
our ‘recipe’.

Let us first consider the state process, which is a discrete-
state Markov model. Without observations, the probabilities of
the hidden states evolve as dp̃t = A†p̃t dt , where p̃(i)t = p(Xt = Si).
It is easy to check that for this model the adjoint generator matrix
is given by

A†
=

(
−a a
a −a

)
, (90)

where a denotes the switching rate, i.e. a dt is the probability of
switching the state.

The observation model is a two-dimensional point process,
and N j

t denotes the number of clicks in speaker j up to time t .
Let hji = hj(X = Si) be the rate of speaker j if the hidden variable
is in state Si. Thus, the evolution of the posterior probability pt is
given by (cf. Eq. (88)):

dp(i)t = (A†pt )i dt + p(i)t
2∑

j=1

(hji − ⟨hj⟩)⟨hj⟩
−1(dN j

t − ⟨hj⟩ dt), (91)

where ⟨hj⟩ =
∑

i hjip
(i)
t . Since this particular system is

2-dimensional, i.e. p(2)t = 1 − p(1)t , we can substitute this in the
expression for the first component of the posterior and get a
one-dimensional equation for p(1)t .

dp(1)t = a(1 − 2p(1)t ) dt

+ p(1)t

2∑
j=1

(hj1 − hj2)(1 − p(1)t )
(
1/⟨hj⟩ dN

j
t − dt

)
, (92)

where ⟨hj⟩ = hj1p
(1)
t + hj2(1 − p(1)t ). At the end of the trial, S1 is

the optimal choice whenever p(1)t > 1/2.
For several reasons, it might be desirable to define the decision

variable as the log likelihood ratio of being in state S1 as opposed
to being in S2. Let αt = log p(1)t

p(2)t
= log p(1)t

1−p(1)t
. In order to derive its

evolution equation, we can directly apply Itô’s lemma for point

18 We are glad they did not use mice, as these animals, according to the
Hitchhiker’s guide, are the most intelligent species on planet Earth and as such
would surely have outperformed the optimal solution. Rats are close enough,
though.

processes to Eq. (92) with φ(x) =
x

1−x and after straightforward,
but tedious, algebra arrive at the desired SDE.

dαt = −2a sinhαt dt

+

2∑
j=1

[
(hj2 − hj1) dt + log

hj1

hj2
dN j

t

]
. (93)

Note that if h11 − h12 = h22 − h21 = r+ − r− (which is the
experimental setting in Piet et al., 2018), this equation becomes
very simple:

dαt = −2a sinhαt dt + log
r+
r−

(dN (1)
t − dN (2)

t ), (94)

and resembles Eq. (9) in Piet et al. (2018). Without this symmetry,
there is a drift term modulated by the difference in click rates,
indicating that the absence of clicks is informative for estimating
the current state. In Fig. 4, we plotted the log likelihood ratio,
both computed from the posterior probabilities as in Eq. (91),
and directly from running Eq. (94). Unsurprisingly, both plots lie
exactly on top of each other.

Note that this result was obtained by simply plugging in a
model, i.e. the signal and the observation process, into the so-
lution to the filtering equation, and making use of the fact that
for a finite state space, the Kushner equation for point processes,
Eq. (88), becomes finite-dimensional. Unlike in Piet et al. (2018)
or in Veliz-Cuba et al. (2016), we did not have to explicitly carry
out the continuum limit - in fact, this is implicitly taken care of
by using the appropriate Radon–Nikodym derivative for this ob-
servation model. This allows for much more flexibility when the
models and/or experimental settings become more complicated,
for instance if we want to increase the number of states, modify
the state dynamics or modify the properties of the speakers.

A fully annotated code for this example is available in our
github repository (Kutschireiter, 2019).

5. Don’t panic: Approximate closed-form solutions

‘‘It is a mistake to think you can solve any major problems just
with potatoes’’.

[Douglas Adams]

If the signal model is a jump–diffusion, the KSE (Eqs. (75),
(87)) is infinite-dimensional, a fact known as ‘closure problem’.
In other words, except for some important exceptions for very
specific models, such as the KBF or the Beneš filter (Benes, 1981),
solutions to the general filtering problems are not analytically
accessible. Furthermore, unlike for observations following a diffu-
sion process, no closed-form filter for point-process observations
is known. However, there exist important approximate closed-
form solutions, which address the closure problem by approxi-
mating the posterior density in terms of a set number of sufficient
statistics.
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Here, we will briefly outline some important examples: first,
the Extended Kalman–Bucy Filter and related methods for point-
process observations that rely on a series expansion of the func-
tions in the generative model, such that the posterior is
approximated by a Gaussian density. We will further describe as-
sumed density filters, that choose a specific form of the posterior
and propagate the KSE according to this approximation.

5.1. The extended Kalman–Bucy filter and related approaches

Based on the Kalman–Bucy filter (Section 4.3), the extended
Kalman–Bucy filter (EKBF) is an approximation scheme for non-
linear generative models of the form

dXt = f (Xt )dt +Σ1/2
x dWt

dYt = h(Xt )dt +Σ1/2
y dVt .

The EKBF approximates the posterior by a Gaussian with mean µt
and variance Σt , whose dynamics are derived by local lineariza-
tion (around the mean) of the nonlinearities in the model (Jazwin-
ski, 1970, p. 338, Example 9.1):

dµt = f (µt ) dt +ΣtH⊤(µt )Σ−1
y

(
dYt − h(µt ) dt

)
, (95)

dΣt =

(
F (µt )Σt +ΣtF (µt )⊤ +Σx

−ΣtH⊤(µt )Σ−1
y H(µt )Σt

)
dt, (96)

where Fij =
∂ fi
∂xj

and Hij =
∂hi
∂xj

denote the Jacobian of the
hidden drift function and the observation function, respectively.
For models with multimodal posteriors, this approximation often
breaks down: e.g. if the noise covariance Σy is large, the mean of
the EKBF tends to ‘get stuck’ in one of the modes.

Similar approximations exist for point-process observations.
One way to achieve this would be to simply construct an EKBF
by assuming Gaussian noise in the observations, together with the
appropriate linearization (see paragraph below Eq. (17) in Eden,
2007). Another way that allows the point-process observations to
directly enter the expressions for mean and variance relies on a
Taylor expansion in the log domain of the approximated posterior
up to second order (see Eden, Frank, Barbieri, Solo, & Brown, 2004
for discrete-time and Eden & Brown, 2008 for the continuous-
time models). The continuous-time approximate filter for point
processes can be seen as the point-process analogue of the
EKBF (cf. Eden & Brown, 2008, extended by nonlinearity in the
hidden state process):

dµt = f (µt ) dt +Σt

l∑
i=1

(∇x log hi(x))|x=µt

(
dN i

t − hi(µt ) dt
)
, (97)

dΣt =

(
F (µt )Σt +ΣtF (µt )⊤ +Σx

)
dt

−Σt

l∑
i=1

(
∂2hi(x)
∂x∂x⊤

⏐⏐⏐⏐
x=µt

dt + Si dN i
t

)
Σt , (98)

with

Si =

⎧⎪⎨⎪⎩
(
Σt −

(
∂2 log hi(x)
∂x∂x⊤

⏐⏐⏐
x=µt

)−1
)−1

if ∂2 log hi(x)
∂x∂x⊤

⏐⏐⏐
x=µt

̸= 0

0 otherwise.

(99)

5.2. Assumed density filtering

The idea of assumed density filters (ADF) is to specify a
set of sufficient statistics, which is supposed to approximate

the posterior density, derive evolution equations from the KSE,
i.e. from Eqs. (75) and (87), and approximate expectations within
these evolution equations under the initial assumptions. To be
less abstract, consider approximating the posterior density by a
Gaussian density. Then it suffices to derive evolution equations
for mean µt and variance Σt of the approximated Gaussian
posterior. In these evolution equations, higher-order moments
will enter, which in turn can be expressed in terms of mean and
variance for a Gaussian.

As a concrete example, let us consider a Gaussian ADF for
point-process observations (the treatment for diffusion-
observations is completely analogous). Consider the SDEs for
the first two moments of the posterior (cf. Eq. (87), detailed
derivation in Appendix A.4):

dµt = ⟨f (Xt )⟩ dt + cov(Xt , h(Xt )⊤) diag (⟨h(Xt )⟩)−1

× (dNt − ⟨ht⟩dt) , (100)
dΣt =

(
cov(f (Xt ), X⊤

t ) + cov(Xt , f (Xt )⊤) +Σx
)
dt

+

l∑
i=1

1
⟨hi(Xt )⟩

[
cov(hi(Xt ), XtX⊤

t ) − cov(hi(Xt ), Xt )µ⊤

t

− µtcov(hi(Xt ), X⊤

t )
]
×
(
dN i

t − ⟨hi(Xt )⟩dt
)

−

l∑
i=1

1
⟨hi(Xt )⟩2

cov(hi(Xt ), Xt )cov(hi(Xt ), X⊤

t )dN i
t . (101)

The effective realization of the ADF will crucially depend on
the specifics of the signal model defined by Eq. (43) and the
observation model (61), respectively. For example, Pfister, Dayan,
and Lengyel (2009) consider an exponential rate function h(x) ∝

exp(βx), which leads to a variance update term that is inde-
pendent of the spiking process. Of particular interest for decod-
ing tasks in neuroscience are ADFs with Gaussian-shaped rate
function (e.g. Harel, Meir, & Opper, 2018).

However, for some models ADFs cannot be computed in closed
form. Consider for simple example a rate function that is a soft
rectification of the hidden process, e.g. h(x) = log(exp(x) + 1),
which, when taking expectations with respect to a Gaussian, does
not admit a closed-form expression in terms of mean µt and
variance Σt .

6. Approximations without infinite improbability drive: Parti-
cle methods

‘‘Each particle of the computer, each speck of dust
held within itself, faintly and weakly, the pattern of the whole’’.

[Douglas Adams]

Particle filtering (PF) is a numerical technique to approximate
solutions to the filtering problem by a finite number of samples,
or ‘particles’, from the posterior. Thus, they serve as a finite-
dimensional approximation of the KSE, overcoming the closure
problem. The true posterior is approximated by the empirical
distribution formed by the particle states X (i)

t , i.e. a sum of Dirac-
delta functions at the particle positions δ(x − X (i)

t ), and, if it
is a weighted PF, weighted by their corresponding importance
weights w(i)

t ,

p(x|Y0:t ) ≈

M∑
i=1

w
(i)
t δ(x − X (i)

t ), (102)

with
∑

iw
(i)
t = 1 ensuring normalization. Consequently,

EP [φ(Xt )|Y0:t ] ≈

M∑
i=1

w
(i)
t φ(X

(i)
t ). (103)
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The rationale is based on a similar idea as using the Euler–
Maruyama scheme to numerically solve the Fokker–Planck equa-
tion and its associated equation for the posterior moments. As a
numerical recipe (for instance provided by Doucet et al., 2000;
Doucet & Johansen, 2009, for discrete-time models), it is easily
accessible, because in principle no knowledge of the Fokker–
Planck equation, nonlinear filtering theory or numerical methods
for solving partial differential equations is needed.

In this section, weighted particle filters will be introduced
from a continuous-time perspective based on the change of prob-
ability measure formalism (roughly following Bain & Crisan, 2009,
Chapt. 9.1, and extending this to point-process observations).
From this formalism, we derive dynamics for the weights and
link these to the ‘curse of dimensionality’. Finally, to give context
for readers more familiar with discrete-time particle filtering,
the continuous-time perspective will be linked to the ‘standard’
particle filter (PF).

6.1. Particle filtering in continuous time

Based on sequential importance sampling, samples (or ‘par-
ticles’) X (i)

t as well as their respective weights are propagated
through time. As we have seen before in Section 2.1.1, importance
sampling amounts to a change of measure from the original
measure P to a reference measure Q, from which sampling is
feasible. Here, the idea is to change to a measure under which
the observation processes are independent of the hidden process,
effectively enabling us to sample from the hidden process. In
other words, the particle positions evolve as specified by the
infinitesimal generator A of the hidden process (e.g. Eq. (43) if
the hidden process is a jump–diffusion process).

Why this should be the case is rather intuitive when recalling
the Kallianpur–Striebel formula (65):

EP [φt |Y0:t ] =
1
Zt

EQ[φt Lt |Y0:t ].

If we want to approximate the left-hand side of this equation
with empirical samples, it would require us to have access to
samples from the real posterior distribution, which is usually
not the case. However, since under the measure Q on the right-
hand side the hidden state and observations are decoupled, the
estimate is approximated by empirical samples that correspond
to realizations of the hidden process:

1
Zt

EQ[φt Lt |Y0:t ] ≈
1
Z̄t

M∑
i=1

φ(X (i)
t )Lt (X

(i)
t ). (104)

Z̄t =
∑M

i=1 Lt (X
(i)
t ) is an empirical estimate of the normalization

constant.
Thus, we just need to evaluate the Radon–Nikodym derivative

at the particle states X (i)
t , giving us the importance weight w(i)

t of
particle i at time t . For observation corrupted by Gaussian noise
(cf. Eq. (70)), this reads:

w
(i)
t =

1
Z̄t

Lt (X
(i)
t ) (105)

=
1
Z̄t

exp
[∫ t

0
h(X (i)

s )⊤Σ−1
y dYs

−
1
2

∫ t

0
h(X (i)

s )⊤Σ−1
y h(X (i)

s ) ds
]
. (106)

Similarly, we find for point-process observations (cf. Eq. (83))

w
(i)
t =

1
Z̄t

l∏
j=1

exp

(∫ t

0
log

hj(X
(i)
s )

λ0
dN j

s +

∫ t

0
(λ0 − hj(X (i)

s )) ds

)
.

(107)

6.1.1. Weight dynamics in continuous time
If one is interested how the weight of particle i changes over

time, it is possible to derive an evolution equation for the particle
weights. Using Itô’s lemma, we find:

dw(i)
t = d

(
Lt (X

(i)
t )

Z̄t

)
= Z̄−1

t dL(i)t + L(i)t dZ̄−1
t + dL(i)t dZ̄−1

t , (108)

For continuous-time observations, (cf. Eq. (71)) yields

dL(i)t = L(i)t (h(X (i)
t ))⊤Σ−1

y dYt , (109)

dZ̄t =

M∑
i=1

dL(i)t = Z̄t (h̄t )⊤Σ−1
y dYt , (110)

where h̄t :=
∑

iw
(i)
t h(X (i)

t ) = Z̄−1
t
∑

i L
(i)
t h(X (i)

t ) is the weighted
estimate of the observation function ht (i.e. under the original
measure P). Applying Itô’s lemma on Eq. (110) to obtain dZ̄−1

t ,
we find for the dynamics of the weights

dw(i)
t = w

(i)
t

(
h(X (i)

t ) − h̄t

)⊤

Σ−1
y (dYt − h̄tdt) (111)

Similarly, with Eq. (84) we find for point-process observations:

dL(i)t = L(i)t
l∑

j=1

1
λ0

(
hj(X

(i)
t ) − λ0

)(
dN j

t − λ0 dt
)
, (112)

dZ̄t = Z̄t
l∑

j=1

1
λ0

(h̄j − λ0)
(
dN j

t − λ0 dt
)
, (113)

and thus, using Itô’s lemma for point processes to obtain dZ̄−1
t ,

with Eq. (108):

dw(i)
t = w

(i)
t

l∑
j=1

1
h̄j,t

(
hj(X

(i)
t ) − h̄j,t

)(
dN j

t − h̄j,tdt
)

(114)

= w
(i)
t

(
h(X (i)

t ) − h̄t

)⊤

diag(h̄t )−1 (dNt − h̄tdt
)
. (115)

Interestingly, there is a striking similarity to the dynamics
of the importance weights and the Kushner equation (77) and
the point-process observation equivalent of the Kushner equation
(Eq. (88)), respectively. The weight dynamics seem to directly
correspond to the dynamics of the correction step (with true
posterior estimates replaced by their empirical counterparts).
This is rather intuitive: since we chose a change of measure
under which the particles follow the hidden dynamics, serving
as the prediction step, the observation dynamics have to be fully
accounted for by the weight dynamics, in a way to be consistent
with the Kushner equation.

It is important to note that the weight dynamics inevitably
lead to a system in which all but one weight equals zero. This
is called weight degeneracy. In this degenerate state, the particle
system cannot represent the posterior sufficiently, and hence
has to be avoided numerically, e.g. by resampling the particles
from the weight distribution and resetting the weights to 1/M .
The time scale on which this weight degeneracy happens de-
pends on the number of observable dimensions, in other words
it is accelerated as the dimensionality of the system is increased
(Surace, Kutschireiter, & Pfister, 2019b). This is a form of the so-
called ’curse of dimensionality’, a common nuisance in weighted
particle filters.

6.1.2. Equivalence between continuous-time particle filtering and
bootstrap particle filter

The practitioner who is using PF algorithms in their numer-
ical implementations might usually be more familiar with the
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discrete-time formulation. Further, since the continuous-time
formulation of the particle filter based on the measure change
formalism seems to be so different from the discrete-time for-
mulation, one might rightfully ask how these two concepts are
related and whether they are equivalent. Indeed, we will now
quickly show that the continuous-time PF in Section 6.1 cor-
responds to the Bootstrap PF in a continuous-time limit. More
precisely, if we apply the Bootstrap PF to a time-discretized
version of our hidden state process model and observation model,
and then take the continuum limit, we will regain the equations
for the weights as in Section 6.1.

Irrespectively of the generator A of the hidden process, it is
straightforward to write the hidden process in terms of a transi-
tion density, with t −dt corresponding to the previous time step.
This acts as the proposal density π (Xt |X

(i)
0:t−dt , Y0:t ) = p(Xt |X

(i)
t−dt ).

Consider for example a drift–diffusion process (Eq. (43) with
J = 0). Then the particles are sampled from the time-discretized
transition density, X (i)

t ∼ p(Xt |X
(i)
t−dt ), which is given by19:

p(Xt |X
(i)
t−dt ) = N

(
Xt; X

(i)
t−dt + f (X (i)

t−dt ) dt,Σx dt
)
. (116)

For observations corrupted by Gaussian noise, the emission like-
lihood is given by the emission probability for the instantaneous
increments dYt in Eq. (43), i.e.

p(dYt |X
(i)
t ) = N

(
dYt; h(X

(i)
t ) dt,Σy dt

)
, (117)

such that the unnormalized weights are given by

w̃
(i)
t = w̃

(i)
t−dt N

(
dYt; h(X

(i)
t ) dt,Σy dt

)
. (118)

It is evident that the proposal of continuous-time particle
filtering and that of the BPF match, and it remains to show that
the same holds for the importance weights. In other words, when
taking the continuum limit of Eq. (118), we should be able to
recover Eq. (106). Keeping only terms up to O(dt), we find

p(dYt |X
(i)
t )

∝ exp
(

−
1
2
(dYt − h(X (i)

t )dt)⊤(Σydt)−1(dYt − h(X (i)
t )dt)

)
∝ exp

(
h(X (i)

t )⊤Σ−1
y dYt −

1
2
h(X (i)

t )⊤Σ−1
y h(X (i)

t )dt
)
, (119)

where the term ∝ (dYt )2 was absorbed in the normalization
because it is independent of the particle positions. Thus, the
continuous-time limit dt → 0 of Eq. (35) reads

w̃
(i)
t ∝

t∏
s=0

w̃(i)
s =

t∏
s=0

exp

(
(h(X (i)

s ))⊤Σ−1
y dYs

−
1
2
h(X (i)

s )⊤Σ−1
y h(X (i)

s )ds

)

→ exp
(∫ t

0
h(X (i)

s )⊤Σ−1
y dYs

−
1
2

∫ t

0
h(X (i)

s )⊤Σ−1
y h(X (i)

s )ds
)
, (120)

which, up to the normalization constant Z̄t , is equivalent to
Eq. (106).

For point-process observations, the emission likelihood is given
by p(dNt |Xt ), which is defined by the Poisson density in Eq. (61).

19 Remark: The so-called Euler–Maruyama scheme for numerical implemen-
tation of diffusion processes is based on the very same discretization.

Neglecting the term that is independent of the particle positions
(which is absorbed in the normalization), it can be rewritten as:

p(dNt |X
(i)
t ) =

∏
j

Poisson(dN j
t; hj(X

(i)
t )dt)

=

∏
j

1

dN j
t !

exp
(
−hj(X

(i)
t )dt + dN j

t log(hj(X
(i)
t )dt)

)
∝

∏
j

exp
(
log hj(X

(i)
t )dN j

t − hj(X
(i)
t )dt

)
. (121)

Again, since w̃(i)
t ∝

∏
s p(dNs|X

(i)
s ), the continuous-time limit of

the unnormalized importance weight is

w̃
(i)
t →

∏
j

exp
(∫ t

0
log hj(X (i)

s )dN j
s − hj(X (i)

s )ds
)
. (122)

The explicit dependence of Eq. (107) on the reference rate λ0 can
be absorbed in the normalization constant, yielding equivalent
expressions for the normalized weights w(i)

t .

6.2. The feedback particle filter

In contrast to weighted particle filtering approaches,
unweighted approaches for particle filtering exist, for example
the Ensemble Kalman (Bucy) Filter (Bergemann & Reich, 2012;
Evensen, 1994), the Feedback Particle Filter (FBPF, Yang, Blom,
& Mehta, 2014; Yang, Mehta, & Meyn, 2013), the (stochastic)
particle flow filter (Daum, Huang, & Noushin, 2010; de Melo,
Maskell, Fasiolo, & Daum, 2015) or the point-process analogue
to the FBPF (Surace, Kutschireiter, & Pfister, 2019a). Since these
methods do not rely on importance weights in the first place,
there is no weight degeneracy. Unweighted particle filters there-
fore hold the promise of avoiding the curse of dimensionality (see
Surace et al., 2019b).

All of these methods have in common that the posterior is
approximated by equally weighted particles, i.e.:

p(x|Y0:t ) ≈
1
N

N∑
i=1

δ(x − X (i)
t ). (123)

Consequently, the observations have to enter the particle dynam-
ics in such a way that the particles are moved towards regions of
high posterior density. As an example, we will outline how this
is achieved in the Feedback particle filter.

In the FBPF, the observations directly enter the particle dy-
namics, which evolve according to the Itô SDE:

dX (i)
t =

(
f (X (i)

t , t) +Ω(X (i)
t , t)

)
dt + G(X (i)

t , t)
1/2dB(i)

t

+ K (X (i)
t , t)Σ

−1
y

[
dYt −

1
2

(
h(X (i)

t ) + h̄t

)
dt
]
, (124)

where B(i)
t are uncorrelated vector Brownian motion processes,

K (X (i)
t , t) is the gain matrix, and h̄t =

1
N

∑N
i=1 h(X

(i)
t ) denotes the

particle estimate of the observation function. The components
of the additional vector-valued drift function Ω(X (i)

t , t) are given
by (Yang, Laugesen, Mehta, & Meyn, 2016)

Ωl(x, t) =
1
2

d∑
j=1

m∑
k=1

Kjk(x, t)
∂Klk

∂xk
(x, t). (125)

The gain K is the solution of a boundary value problem that
emerges from an optimal control problem (Yang et al., 2016,
Eqs. 4, 5). It is chosen such that it minimizes the Kullback–Leibler
divergence between the particle distribution and the posterior
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filtering distribution (conditioned on proper initialization), which
leads to the following conditions:

∇ ·
(
p(x, t|Y0:t )∇ψj(x, t)

)
= −

(
hj − h̄j

)
p(x, t|Y0:t ) (126)∫

ψj(x, t)p(x, t|Y0:t )dx = 0, (127)

with

Kij =
∂ψj

∂xi
. (128)

In general, the gain matrix K (x, t) cannot be solved for in
closed form, and in practical implementations relies on a numeri-
cal solution of the Euler–Lagrange boundary value problem (Tagh-
vaei & Mehta, 2016). For instance, one way to approximate the
gain K (x) is using a Galerkin approximation. In particular, choos-
ing the coordinate functions as basis functions, the so-called
constant gain approximation reads (Yang et al., 2016, Eq. (20)):

K (x, t) =
1
N

N∑
i=1

X (i)
t

(
h(X (i)

t ) − h̄t

)⊤

= K (t). (129)

In this approximation, the gain is constant with respect to the
particle positions, i.e. each particle has the same gain, but still
changes as a function of time. In this approximation, the addi-
tional drift function Ω in Eq. (124) is zero.

For a linear state space model the FBPF with constant-gain
approximation becomes exact and is identical20 to the ensemble
Kalman–Bucy filter (EnKBF, Bergemann & Reich, 2012; Taghvaei,
de Wiljes, Mehta, & Reich, 2017), which can be shown to be
asymptotically exact (Künsch, 2013). More precisely, for a linear
model with f (x) = Ax, G(x) = Σ

1/2
x and h(x) = Bx, the gain K (x)

can be solved for in closed form, using the knowledge that the
posterior is Gaussian at all times, and is given by K = Σ̂tB. The
particles are thus propagated according to (cf. Eq. (124))

dX (i)
t = AX (i)

t dt+ΣxdB
(i)
t +Σ̂tBΣ−1

y

[
dYt −

1
2
B
(
X (i)
t + µ̂t

)]
(130)

where µ̂t and Σ̂t denote the posterior mean and variance as
estimated from the particle positions.

6.3. Particle filters in action

Here, we have seen how weighted particle filters can be con-
structed for nonlinear, continuous time-filtering. Further, we in-
troduced unweighted particle filters as an alternative, which, for
some systems (for instance with a high-dimensional observation
model), may be advantageous over standard particle filtering.
However, unweighted particle filters come at the cost of having
to compute the gain function, which can be numerically expen-
sive. Here, we want to demonstrate with an example how these
algorithms can be applied as numerical algorithms to a simple
nonlinear filtering problem.

Let us consider a hidden process with drift function f (x) =

−4x(x2 − 1) and diffusion constant g(x) = Σ
−1/2
x . The corre-

sponding stationary probability density of this nonlinear model
is a bimodal distribution, with peaks at x = ±1. First, we use
observations corrupted by Gaussian noise, e.g. with h(x) = x
(note that the model is still nonlinear due to the nonlinearity
in the state transition). This filtering problem cannot be solved
for in closed form and thus we have to use a finite-dimensional
approximation, such as the particle filter.

20 Up to small numerical difference when computing the gain

With Eqs. (116) and (118), the particle transition and weight
dynamics for a standard particle filter (i.e. the Bootstrap particle
filter) for this model is given by

p(Xt |X
(i)
t−dt ) = N

(
Xt; X

(i)
t−dt − 4X (i)

t−dt ((X
(i)
t−dt )

2
− 1) dt,Σx dt

)
,(131)

w̃
(i)
t = w̃

(i)
t−dt N

(
dYt; X

(i)
t dt,Σy dt

)
. (132)

After each iterative step, the weights need to be normalized
according to w(i)

t = w̃
(i)
t /
∑

j w̃
(j)
t . An example tracking simulation

is shown in Fig. 5a and b. For comparison, we also consider an
extended Kalman–Bucy filter (see Section 5.1) and a feedback
particle filter with constant gain approximation (Fig. 5a,c).

Similarly, we might also consider point-process observations
with intensity g(Xt ). For example, let us use a Gaussian-shaped
rate function g(x) = g0 exp( x−mo

2s20
) for two sensors with peaks at

m0 = ±1 and width s0. Fig. 5d shows that a particle filter is able
to track the hidden state reasonably well based only on the events
elicited from these two sensors. Note also the similarity of this
model to the two-state HMM model example we used earlier in
Section 4.5.

A fully annotated code for this example, which also explains
the technical details of this simulation, is available in our github
repository (Kutschireiter, 2019).

7. The restaurant at the end of the universe: Take-away mes-
sages

‘‘For where he had expected to find nothing,
there was instead a continuous stream of data’’.

[Douglas Adams]

In this tutorial, we reviewed some of the theory of nonlinear
filtering theory. In fact, we wanted to emphasize that the change
of probability measure approach can be used as a universal tool
in this context. Not only does it help to derive the corresponding
equations such as the filtering equations, but also leads to a
deeper understanding of particle filters.

Let us once more summarize the main take-away messages of
this tutorial:

1. The change of measure method comes in handy when-
ever expectations are easier to evaluate under a different
measure. For example, when computing conditional expec-
tations, it is often easier to compute under a measure in
which the random variables are independent. The Radon–
Nikodym derivative acts as the ‘conversion factor’ between
the expectations under the different measures.

2. The filtering equations can be derived by changing to a
reference measure under which signal process and obser-
vation process are independent. Since this measure change
acts on the observation process and leaves the signal pro-
cess untouched, the filtering equations have the same
structure independently of the signal process (which en-
ters in terms of its infinitesimal generator A). Further, all
the information about the observations is carried by the
Radon–Nikodym derivative.

3. For a general continuous-time and continuous state space
nonlinear filtering problem the filtering equations suffer
from a closure problem. Suitable approximations are based
on a finite-dimensional representation of the filtering den-
sity, e.g. in terms of a finite number of statistics (such as
the EKF or ADFs) or a finite number of samples (such as
PFs).
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Fig. 5. Nonlinear filtering for a hidden state with state dynamics given by f (x) = −4x(x2 −1) and Σx = 2. (a) Estimated first posterior moment µ̂t from observations
corrupted by Gaussian noise with h(x) = 1 and Σy = 0.1. (b) Full posterior from BPF, corresponding to a weighted histogram of the particle positions. (c) Same as
(b), but for FBPF. (d) Filtering with the BPF from point-process observations. Here, we consider two sensors with Gaussian-shaped rate functions g(x) and g0 = 50,
s0 = 0.05 and m0 = ±1. EKF: Kalman–Bucy filter, BPF: Bootstrap particle filter, FBPF: Feedback particle filter with constant-gain approximation.

4. Bootstrap particle filtering can be derived by again chang-
ing to a reference measure under which the signal and ob-
servation processes are decoupled (which is the very same
that was used for deriving the filtering equations), and
evaluating the expectations empirically. The importance
weights correspond to the Radon–Nikodym derivative of
this measure change, evaluated at the particle positions.
Thus, the contribution of the signal process (to the solu-
tion of the filtering problem) enters via the positions of
the particles (‘prediction’), while the contribution of the
observations enters via the importance weights (‘update’).
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Appendix A. Mostly harmless: detailed derivation steps

‘‘You ask this of me who have contemplated the very vectors of
the atoms of the Big Bang itself?
Molest me not with this pocket calculator stuff’’.

[Douglas Adams]

Here, we provide some additional steps that we used in our
derivations and left out to keep the main text concise.

A.1. Evolution equation of Radon–Nikodym derivative Lt (Eq. (71))

In Section 4.2, we took the form of the Radon–Nikodym
derivative in Eq. (70), and from this form deduced the evolution
equation in Eq. (71), i.e., Eq. (70) is the solution of Eq. (71).
Showing this is a nice application of Itô’s lemma and is therefore
outlined here in more detail.

Define

Λt := log Lt

=

[∫ t

0

(
Σ−1/2

y hs
)⊤

dȲs −
1
2

∫ t

0

Σ−1/2
y hs

2 ds
]
. (A.1)

dΛt =
(
Σ−1/2

y ht
)⊤

dȲt −
1
2

Σ−1/2
y ht

2 dt. (A.2)

Then, with Itô’s lemma (recall that for diffusion processes this
amounts to a Taylor expansion up to second order in the differ-
ential):

dLt := d(expΛt )

= expΛtdΛt +
1
2
expΛt (dΛt )2

= expΛtdΛt +
1
2
expΛt

Σ−1/2
y ht

2 dt
= Lt

[(
Σ−1/2

y ht
)⊤

dȲt −
1
2

Σ−1/2
y ht

2 dt
]

+
1
2
Lt
Σ−1/2

y ht
2 dt

= Lth⊤

t Σ
−1/2
y dȲt (A.3)

= Lth⊤

t Σ
−1
y dYt . (A.4)

A.2. Kushner–Stratonovich equation (Eq. (75))

The Kushner–Stratonovich equation describes the SDE for the
posterior estimate under the original measure P. With the
Kallianpur–Striebel formula (65), we first write the posterior
estimate under the reference measure Q. This is given by Eq. (72),
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revisited here for convenience:

dEP [φt |Yt ]

=
1
Zt

⟨d(φtLt )⟩Q + ⟨φtLt⟩Q d
(

1
Zt

)
+ ⟨d(φtLt )⟩Q d

(
1
Zt

)
.

(72 revisited)

Let us evaluate these terms separately. The first term can be
expressed as

1
Zt

⟨d(φtLt )⟩Q =
1
Zt

⟨
Ltdφt + φtdLt + dφtdLt  

=0

⟩
Q

=
1
Zt

(
⟨LtAφt⟩Q dt +

⟨
φtLt (Σ−1/2

y ht )⊤
⟩
Q
dȲt

)
= ⟨Aφt⟩P dt +

⟨
φth⊤

t

⟩
PΣ

−1
y dYt , (A.5)

where we first used the Itô lemma for products, and then made
use of ⟨dWt = 0⟩Q. The term dφtdLt equals zero because their
noise components are independent. Further, we used the
Kallianpur–Striebel formula to rewrite the expressions in terms of
expectations under P. This equation is basically the unnormalized
measure in Eq. (74) multiplied by Z−1

t , which we could have used
directly.

To obtain dZ−1
t , we need to apply Itô’s lemma to the SDE of

the normalization constant Zt in Eq. (65). dZt = d ⟨Lt⟩Q is given
by Eq. (74) with φ = 1.

dZt = d ⟨Lt⟩Q =
⟨
Lt (Σ−1/2

y ht )⊤dȲt
⟩
Q
. (A.6)

Using Itô’s lemma, we find:

dZ−1
t = −Z−2

t dZt + Z−3
t (dZt)2

= −Z−2
t

⟨
Lt (Σ−1/2

y ht )⊤
⟩
Q
dȲt + Z−3

t

⟨
Lt
Σ−1/2

y ht
⟩2

Q
dt

= −Z−1
t

⟨
(Σ−1/2

y ht )⊤
⟩
P
dȲt + Z−1

t

⟨Σ−1/2
y ht

⟩2
P
dt

= −Z−1
t ⟨ht⟩

⊤

P Σ
−1
y (dY − ⟨ht⟩P dt) (A.7)

Thus, the second term in Eq. (72) reads:

⟨φtLt⟩Q d
(

1
Zt

)
= − ⟨φt⟩P ⟨ht⟩

⊤

P Σ
−1
y (dY − ⟨ht⟩P dt), (A.8)

Finally, the third term uses the SDE of the unnormalized
posterior expectation in Eq. (74) and the SDE in Eq. (A.7), keeping
only terms up to O(dt).

⟨d(φtLt )⟩Q (d
1
Zt

) = −
⟨
φth⊤

t

⟩
PΣ

−1
y ⟨ht⟩P dt. (A.9)

Adding up and rearranging the terms, we end up with

dEP [φt |Yt ] = ⟨Aφt⟩P dt +
(⟨
φth⊤

t

⟩
P − ⟨φt⟩P ⟨ht⟩

⊤

P

)
× Σ−1

y (dYt − ⟨ht⟩P) dt

= ⟨Aφt⟩P dt + covP(φt , h⊤

t )

× Σ−1
y (dYt − ⟨ht⟩P dt) . (A.10)

A.3. Kushner–Stratonovich equation for point-process observations
(Eq. (87))

The steps are analogous to those taken in the previous section,
with a little caveat: here, SDEs are governed by a point process
due to the observation process Nt , so whenever we apply Itô’s
lemma, we need to consider an infinite-dimensional Taylor expan-
sion in the differential, since dNn

t = dN . Also, for simplicity, the
following derivation is done for a one-dimensional observation
process. However, it is straightforward to be generalized to l di-
mensions by considering that the observations in each dimension

are independent conditioned on all observations up to t , which
lead to the product in Eq. (83) and the sums in Eq. (83ff).

First, using the Kallianpur–Striebel formula, we compute the
SDE for the normalized posterior expectation by expressing it in
terms of the unnormalized posterior SDE:

d ⟨φt⟩P = d
(
Z−1
t ⟨Ltφt⟩Q

)
=

1
Zt

⟨d(φtLt )⟩Q + ⟨φtLt⟩Q d
(

1
Zt

)
+ ⟨d(φtLt )⟩Q d

(
1
Zt

)
, (A.11)

where we used Itô’s lemma for products and the fact that under
Q, we can interchange expectation and differentiation.

Again, we compute the terms separately. Using the evolution
equation of the unnormalized measure Eq. (86), we find:

1
Zt

⟨d(φtLt )⟩Q = Z−1
t ⟨Aφt Lt⟩Q dt

+ Z−1
t

⟨
φtLt ·

(
ht

λ0
− 1

)⟩
Q
(dNt − λ0dt)

= ⟨Aφt⟩P dt +
1
λ0
(⟨φtLt⟩P − ⟨φt⟩P λ0)

× (dNt − λ0dt). (A.12)

For the second term, we again write down the SDE for the
normalization constant Zt and its inverse. From Eq. (86) with
φt = 1 we find:

dZt = d ⟨Lt⟩Q =

⟨
Lt

(
ht

λ0
− 1

)⟩
Q
(dNt − λ0dt)

=

(
⟨ht⟩P

λ0
− 1

)
(dNt − λ0dt). (A.13)

The SDE for its inverse is obtained by using Itô’s lemma for point
processes (Eq. (47)):

dZ−1
t = −Z−1

t (λ0 − ⟨ht⟩P) dt

+

[
Zt + Zt

(
⟨ht⟩P

λ0
− 1

)−1

− Z−1
t

]
dNt

= Z−1
t (λ0 − ⟨ht⟩P)

1
⟨ht⟩P

(dNt − ⟨ht⟩P dt) . (A.14)

Now we can write

⟨φtLt⟩Q d
1
Zt

= Z−1
t ⟨φtLt⟩Q (λ0 − ⟨ht⟩P)

1
⟨ht⟩P

(dNt − ⟨ht⟩P dt)

= ⟨φt⟩P (λ0 − ⟨ht⟩P)
1

⟨ht⟩P
(dNt − ⟨ht⟩P dt) . (A.15)

Finally, for the last term, we only keep terms of O(dN):

⟨d(φtLt )⟩Q (d
1
Zt

) =
1
λ0
(⟨φtLt⟩P − ⟨φt⟩P λ0) (λ0 − ⟨ht⟩P)

1
⟨ht⟩P

dNt .

(A.16)

Adding up and rearranging the terms, we end up with

d ⟨φt⟩P

= ⟨Aφt⟩P dt − (⟨φtht⟩P + ⟨φt⟩P) dt + (⟨φtht⟩P + ⟨φt⟩P) dNt

= ⟨Aφt⟩P dt +
1

⟨ht⟩P
covP(φt , ht )(dNt − ⟨ht⟩P dt). (A.17)

A generalization to multivariate Nt and ht , respectively, is done by
treating all observable dimensions separately and summing up.
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A.4. ADF for point-process observations (Eqs. (100) and (101))

For the ADF in Section 5.2, we need the SDEs for the first two
posterior moments. These can be obtained with the KSE for point
processes (Eq. (87)). For the mean in Eq. (100), we use φ(x) = x:

dµt = ⟨AXt⟩ dt +

l∑
i=1

cov(hi,t , Xt )⟨
hi,t
⟩ (

dN i
t −

⟨
hi,t
⟩
dt
)

= ⟨ft⟩ dt +

l∑
i=1

cov(hi,t , Xt )⟨
hi,t
⟩ (

dN i
t −

⟨
hi,t
⟩
dt
)

= ⟨ft⟩ dt + cov(Xt , h⊤

t )diag(⟨ht⟩)−1 (dNt − ⟨ht⟩ dt) (A.18)

To compute the SDE for the posterior variance, we use Itô’s
lemma:

dΣt = d(
⟨
XtX⊤

t

⟩
− µtµ

⊤

t ) = d
⟨
XtX⊤

t

⟩
− µtdµ⊤

t

− (dµt )µ⊤

t − (dµt )(dµt )⊤,
(A.19)

with

d(
⟨
XtX⊤

t

⟩
) =

⟨
ftX⊤

t + Xt f ⊤

t

⟩
dt +Σx dt

+

l∑
i=1

cov(hi,t , XtX⊤
t )⟨

hi,t
⟩ (

dN i
t −

⟨
hi,t
⟩
dt
)
, (A.20)

µtdµ⊤

t = µt ⟨ft⟩⊤ dt +

l∑
i=1

µtcov(hi,t , X⊤
t )⟨

hi,t
⟩ (

dN i
t −

⟨
hi,t
⟩
dt
)
,

(A.21)

(dµt )µ⊤

t = ⟨ft⟩µ⊤

t dt +

l∑
i=1

cov(hi,t , Xt )µ⊤
t⟨

hi,t
⟩ (

dN i
t −

⟨
hi,t
⟩
dt
)
,

(A.22)

(dµt )(dµt )⊤ =

l∑
i=1

1⟨
hi,t
⟩2 cov(hi,t , Xt )cov(hi,t , Xt )⊤dN i

t . (A.23)

Adding these up gives us Eq. (101).

References

Armstrong, J., & Brigo, D. (2013). Stochastic filtering via L2 projection on mixture
manifolds with computer algorithms and numerical examples. http://dx.doi.
org/10.1007/s00498-015-0154-1, arXiv.

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking.
IEEE Transactions on Signal Processing, 50, 174–188. http://dx.doi.org/10.
1109/78.978374, URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=978374.

Bain, A., & Crisan, D. (2009). Fundamentals of stochastic filtering. New York:
Springer, http://dx.doi.org/10.1007/978-0-387-76896-0.

Benes, V. E. (1981). Exact finite-dimensional filters for certain diffu-
sions with nonlinear drift. Stochastics, 5, 65–92. http://dx.doi.org/10.1080/
17442508108833174.

Bergemann, K., & Reich, S. (2012). An ensemble Kalman–Bucy filter for continu-
ous data assimilation. Meteorologische Zeitschrift, 21, 213–219. http://dx.doi.
org/10.1127/0941-2948/2012/0307.

Bishop, C. M. (2006). Pattern recognition and machine learning, volume 4. Berlin,
Heidelberg: Springer-Verlag.

Bobrowski, O., Meir, R., & Eldar, Y. (2009). Bayesian filtering in spiking neural
networks: Noise, adaptation, and multisensory integration. Neural Computa-
tion, 1–39, URL: http://www.mitpressjournals.org/doi/abs/10.1162/neco.2008.
01-08-692.

Bremaud, P. (1981). Point processes and queues: Martingale dynamics. In
Springer series in statistics. Springer New York, URL: https://books.google.ch/
books?id=k5jarX-BssUC.

Brigo, D., & Hanzon, B. (1998). On some filtering problems arising in mathemati-
cal finance. Insurance: Mathematics & Economics, 22, 53–64. http://dx.doi.org/
10.1016/S0167-66879800008-0.

Brigo, D., Hanzon, B., & Le Gland, F. (1999). Approximate nonlinear fil-
tering by projection on exponential manifolds of densities. Bernoulli, 5,
495–534. http://dx.doi.org/10.2307/3318714, URL: http://projecteuclid.org/
euclid.bj/1172617201.

Brigo, D., Hanzon, B., & LeGland, F. (1998). A differential geometric approach to
nonlinear filtering: the projection filter. Institute of Electrical and Electronics
Engineers. Transactions on Automatic Control, 43, 247–252. http://dx.doi.org/
10.1109/9.661075, URL: http://ieeexplore.ieee.org/document/661075/.

Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting
nerve cells. Biological Cybernetics, 59, 189–200. http://dx.doi.org/10.1007/
BF00318010.

Brunn, D., Sawo, F., & Hanebeck, U. D. (2006). Efficient nonlinear Bayesian
estimation based on fourier densities. In IEEE international conference on
multisensor fusion and integration for intelligent systems (pp. 317–322). http:
//dx.doi.org/10.1109/MFI.2006.265642.

Cox, D. R. (1955). Some statistical methods connected with series of events.
Journal of the Royal Statistical Society. Series B. Statistical Methodology, 17,
129–164. http://dx.doi.org/10.2307/2983950.

Daum, F. (1986). Exact finite-dimensional nonlinear filters. Institute of Electrical
and Electronics Engineers. Transactions on Automatic Control, 31, 616–622.
http://dx.doi.org/10.1109/TAC.1986.1104344.

Daum, F., Huang, J., & Noushin, A. (2010). Exact particle flow for nonlin-
ear filters. In Signal processing, sensor fusion, and target recognition XIX:
vol. 7697, (pp. 769704–769719). http://dx.doi.org/10.1117/12.839590, URL:
http://link.aip.org/link/?PSI/7697/769704/1.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10, 197–208.

Doucet, A., & Johansen, A. (2009). A tutorial on particle filtering and
smoothing: Fifteen years later. In Handbook of nonlinear filtering
(pp. 4–6). URL: http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/
Classes/PSC10_11/Tutorial_PF_doucet_johansen.pdf.

Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki, D. E., & Pouget, A.
(2014). Optimal multisensory decision-making in a reaction-time task. eLife,
3, 748–756. http://dx.doi.org/10.7554/eLife.03005, URL: https://elifesciences.
org/articles/03005.

Eden, U. T. (2007). Point process adaptive filters for neural data analysis:
Theory and applications. In Decision and control, 2007 46th IEEE conference
on (pp. 5818–5825). http://dx.doi.org/10.1109/CDC.2007.4434708, URL: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4434708.

Eden, U. T., & Brown, E. N. (2008). Continuous-time filters for state esti-
mation from point-process models of neural data. Statistica Sinica, 18,
1293–1310. http://dx.doi.org/10.1038/nrm2621, URL: http://www.nature.co
m/doifinder/10.1038/nrm2621, http://www.ncbi.nlm.nih.gov/pubmed/22065
511, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC320835
3, http://www.nature.com/articles/nrm2621.

Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic
analysis of neural encoding by point process adaptive filtering. Neural
Computation, 16, 971–998. http://dx.doi.org/10.1162/089976604773135069,
URL: http://www.ncbi.nlm.nih.gov/pubmed/15070506.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statis-
tics. Journal of Geophysical Research, 99(10143), http://dx.doi.org/10.1029/
94JC00572.

Gardiner, C. W. (2009). Handbook of stochastic methods (fourth ed.). Heidelberg:
Springer.

Glaze, C. M., Kable, J. W., & Gold, J. I. (2015). Normative evidence accumulation in
unpredictable environments. eLife, 4, http://dx.doi.org/10.7554/eLife.08825.

Gordon, N., Salmond, D., & Smith, A. (1993). Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal
Processing), 140, 107. http://dx.doi.org/10.1049/ip-f-2.1993.0015, URL: http:
//digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015, http://
www3.nd.edu/lemmon/courses/ee67033/pubs/GordonSalmondSmith93.pdf.

Harel, Y., Meir, R., & Opper, M. (2018). Optimal decoding of dynamic stimuli by
heterogeneous populations of spiking neurons: A closed-form approximation.
Neural Computation, 30, 2056–2112. http://dx.doi.org/10.1162/neco_a_01105.

Jazwinski, A. H. (1970). Stochastic processes and filtering theory. New York:
Academic Press.

Jia, B., & Xin, M. (2010). A new nonlinear filtering algorithm via Fourier series. In
Proceedings of the 2010 American control conference, ACC 2010 (pp. 606–6070).
http://dx.doi.org/10.1109/acc.2010.5531300.

Kalman, R. E. (1960). A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME. Series D, Journal of Basic Engineering, 82,
35–45. http://dx.doi.org/10.1115/1.3662552, URL: http://fluidsengineering.
asmedigitalcollection.asme.org/article.aspx?articleid=1430402.

Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction
theory. Transactions of the ASME. Series D, Journal of Basic Engineering,
83(95), http://dx.doi.org/10.1115/1.3658902, URL: http://fluidsengineering.
asmedigitalcollection.asme.org/article.aspx?articleid=1430804.

Klebaner, F. C. (2005). Introduction to stochastic calculus with applications (second
ed.). Imperial College Press.

http://dx.doi.org/10.1007/s00498-015-0154-1
http://dx.doi.org/10.1007/s00498-015-0154-1
http://dx.doi.org/10.1007/s00498-015-0154-1
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1109/78.978374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=978374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=978374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=978374
http://dx.doi.org/10.1007/978-0-387-76896-0
http://dx.doi.org/10.1080/17442508108833174
http://dx.doi.org/10.1080/17442508108833174
http://dx.doi.org/10.1080/17442508108833174
http://dx.doi.org/10.1127/0941-2948/2012/0307
http://dx.doi.org/10.1127/0941-2948/2012/0307
http://dx.doi.org/10.1127/0941-2948/2012/0307
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb6
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb6
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb6
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2008.01-08-692
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2008.01-08-692
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2008.01-08-692
https://books.google.ch/books?id=k5jarX-BssUC
https://books.google.ch/books?id=k5jarX-BssUC
https://books.google.ch/books?id=k5jarX-BssUC
http://dx.doi.org/10.1016/S0167-66879800008-0
http://dx.doi.org/10.1016/S0167-66879800008-0
http://dx.doi.org/10.1016/S0167-66879800008-0
http://dx.doi.org/10.2307/3318714
http://projecteuclid.org/euclid.bj/1172617201
http://projecteuclid.org/euclid.bj/1172617201
http://projecteuclid.org/euclid.bj/1172617201
http://dx.doi.org/10.1109/9.661075
http://dx.doi.org/10.1109/9.661075
http://dx.doi.org/10.1109/9.661075
http://ieeexplore.ieee.org/document/661075/
http://dx.doi.org/10.1007/BF00318010
http://dx.doi.org/10.1007/BF00318010
http://dx.doi.org/10.1007/BF00318010
http://dx.doi.org/10.1109/MFI.2006.265642
http://dx.doi.org/10.1109/MFI.2006.265642
http://dx.doi.org/10.1109/MFI.2006.265642
http://dx.doi.org/10.2307/2983950
http://dx.doi.org/10.1109/TAC.1986.1104344
http://dx.doi.org/10.1117/12.839590
http://link.aip.org/link/?PSI/7697/769704/1
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb17
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb17
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb17
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC10_11/Tutorial_PF_doucet_johansen.pdf
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC10_11/Tutorial_PF_doucet_johansen.pdf
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC10_11/Tutorial_PF_doucet_johansen.pdf
http://dx.doi.org/10.7554/eLife.03005
https://elifesciences.org/articles/03005
https://elifesciences.org/articles/03005
https://elifesciences.org/articles/03005
http://dx.doi.org/10.1109/CDC.2007.4434708
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4434708
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4434708
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4434708
http://dx.doi.org/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.nature.com/doifinder/10.1038/nrm2621
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.ncbi.nlm.nih.gov/pubmed/22065511
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3208353
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://www.nature.com/articles/nrm2621
http://dx.doi.org/10.1162/089976604773135069
http://www.ncbi.nlm.nih.gov/pubmed/15070506
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1029/94JC00572
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb24
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb24
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb24
http://dx.doi.org/10.7554/eLife.08825
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015
http://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015
http://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015
http://www3.nd.edu/lemmon/courses/ee67033/pubs/GordonSalmondSmith93.pdf
http://www3.nd.edu/lemmon/courses/ee67033/pubs/GordonSalmondSmith93.pdf
http://www3.nd.edu/lemmon/courses/ee67033/pubs/GordonSalmondSmith93.pdf
http://dx.doi.org/10.1162/neco_a_01105
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb28
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb28
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb28
http://dx.doi.org/10.1109/acc.2010.5531300
http://dx.doi.org/10.1115/1.3662552
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://dx.doi.org/10.1115/1.3658902
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430804
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430804
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430804
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb32
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb32
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb32


A. Kutschireiter, S.C. Surace and J.-P. Pfister / Journal of Mathematical Psychology 94 (2020) 102307 21

Körding, K. P., Tenenbaum, J. B., & Shadmehr, R. (2007). The dynamics of
memory as a consequence of optimal adaptation to a changing body.
Nature Neuroscience, 10, 779–786. http://dx.doi.org/10.1038/nn1901, URL:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2551734&tool=
pmcentrez&rendertype=abstract, http://www.nature.com/doifinder/10.1038/
nn1901.

Koyama, S., Eden, U. T., Brown, E. N., & Kass, R. E. (2010). Bayesian Decoding
of neural spike trains. Annals of the Institute of Statistical Mathematics, 62,
37–59. http://dx.doi.org/10.1007/s10463-009-0249-x.

Künsch, H. R. (2013). Particle filters. Bernoulli, 19, 1391–1403. http://dx.doi.org/
10.3150/12-BEJSP07, URL: http://projecteuclid.org/euclid.bj/1377612857.

Kushner, H. (1962). On the differential equations satisfied by conditional proba-
bility densities of Markov processes, with applications. Journal of the Society
for Industrial & Applied Mathematics, Control, 2, URL: http://epubs.siam.org/
doi/pdf/10.1137/0302009.

Kushner, H. J., & Dupuis (2001). Numerical methods for stochastic control
problems in continuous time. In Stochastic modelling and applied probability:
Vol. 24, New York, NY: Springer New York, http://dx.doi.org/10.1007/978-1-
4613-0007-6, URL: http://link.springer.com/10.1007/978-1-4613-0007-6.

Kutschireiter, A. (2019). Code for: The Hitchhiker’s guide to nonlinear filtering.
http://dx.doi.org/10.17605/OSF.IO/4C9H.

Macke, J. H., Buesing, L., & Sahani, M. (2011). Estimating state and parameters
in state space models of spike trains. In Z. Chen (Ed.), Advanced state
space methods for neural and clinical data (pp. 137–159). Cambridge: Cam-
bridge University Press, http://dx.doi.org/10.1017/CBO9781139941433.007,
URL: http://ebooks.cambridge.org/ref/id/CBO9781139941433A054.

de Melo, F. E., Maskell, S., Fasiolo, M., & Daum, F. (2015). Stochastic particle flow
for nonlinear high-dimensional filtering problems (pp. 1–61). ArXiv.

Mikulevicius, R., & Rozovskii, B. (2000). Fourier-Hermite Expansions for nonlinear
filtering. Theory of Probability and Its Applications, 44, 606–612. http://
dx.doi.org/10.1137/S0040585X97977835, URL: http://epubs.siam.org/doi/10.
1137/S0040585X97977835.

Ostwald, D., Kirilina, E., Starke, L., & Blankenburg, F. (2014). A tutorial on
variational Bayes for latent linear stochastic time-series models. Journal of
Mathematical Psychology, 60, 1–19. http://dx.doi.org/10.1016/j.jmp.2014.04.
003, URL: http://dx.doi.org/10.1016/j.jmp.2014.04.003.

Pfister, J. -P., Dayan, P., & Lengyel, M. (2009). Know thy neighbour: A
normative theory of synaptic depression. Advances in Neural Information
Processing Systems, 1464–1472, URL: http://papers.nips.cc/paper/3841-know-
thy-neighbour-a-normative-theory-of-synaptic-depression.pdf.

Piet, A. T., Hady, A. E., Brody, C. D., Hady, A. El, & Brody, C. D. (2018). Rats
adopt the optimal timescale for evidence integration in a dynamic envi-
ronment. Nature Communications, 9, 1–12. http://dx.doi.org/10.1038/s41467-
018-06561-y, URL: http://arxiv.org/abs/1710.05945.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77, 257–286. http://dx.doi.org/
10.1109/5.18626, URL: http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Rep
rints/tutorialonhmmandapplications.pdf, http://ieeexplore.ieee.org/document
/18626/.

Radillo, A. E., Veliz-Cuba, A., Josić, K., & Kilpatrick, Z. (2017). Evidence
accumulation and change rate inference in dynamic environments. Neu-
ral Computation, 29, 1561–1610. http://dx.doi.org/10.1162/NECO_a_00957,
URL: http://arxiv.org/abs/1803.01446, http://www.mitpressjournals.org/doi/
abs/10.1162/NECO_a_00957.

Speekenbrink, M. (2016). A tutorial on particle filters. Journal of Mathematical
Psychology, 73, 140–152. http://dx.doi.org/10.1016/j.jmp.2016.05.006.

Stratonovich, R. L. (1960). Conditional Markov processes. Theory of Probability
and its Applications, 5, 3–6.

Surace, S. C. (2015). Towards a functional understanding of short-term plasticity
and the development of a statistical model of in vivo neuronal dynamics. (Ph.D.
thesis).

Surace, S. C., Kutschireiter, A., & Pfister, J. -P. (2019a). Asymptotically exact
unweighted particle filter for manifold-valued hidden states and point
process observations. IEEE Control Systems Letters, 2, 1. http://dx.doi.org/
10.1109/LCSYS.2019.2951093, URL: http://arxiv.org/abs/1907.10143, https://
ieeexplore.ieee.org/document/8890670/.

Surace, S. C., Kutschireiter, A., & Pfister, J. -P. (2019b). How to avoid the
curse of dimensionality: Scalability of particle filters with and without
importance weights. SIAM Review, 61, 79–91. http://dx.doi.org/10.1137/
17M1125340, URL: http://arxiv.org/abs/1703.07879, https://epubs.siam.org/
doi/10.1137/17M1125340.

Taghvaei, A., & Mehta, P. G. (2016). Gain function approximation in the feedback
particle filter. In 2016 IEEE 55th Conference on Decision and Control, CDC
(pp. 5446–5452). IEEE, http://dx.doi.org/10.1109/CDC.2016.7799105, URL:
https://arxiv.org/pdf/1603.05496v1.pdf, http://ieeexplore.ieee.org/document/
7799105/.

Taghvaei, A., de Wiljes, J., Mehta, P. G., & Reich, S. (2017). Kalman filter and
its modern extensions for the continuous-time nonlinear filtering problem.
Transactions of the ASME. Journal of Dynamic Systems, Measurement and
Control, http://dx.doi.org/10.1115/1.4037780, URL: http://arxiv.org/abs/1702.
07241, https://asmedigitalcollection.asme.org/dynamicsystems/article/doi/10.
1115/1.4037780/474492/Kalman-Filter-and-Its-Modern-Extensions-for-the.

Truccolo, W. (2004). A point process framework for relating neural spiking activ-
ity to spiking history, neural ensemble, and extrinsic covariate effects. Journal
of Neurophysiology, 93, 1074–1089. http://dx.doi.org/10.1152/jn.00697.2004,
URL: http://jn.physiology.org/cgi/doi/101152/jn.006972004.

Van Handel, R. (2007). Stochastic calculus, filtering, and stochastic control.
Caltech, URL: http://www.princeton.edu/rvan/acm217/ACM217.pdfcalculus,
Filtering,andStochasticcontrol.pdf.

Van Leeuwen, P. J. (2010). Nonlinear data assimilation in geosciences:
An extremely efficient particle filter. Quarterly Journal of the Royal
Meteorological Society, 136, 1991–1999. http://dx.doi.org/10.1002/qj.699,
URL: http://onlinelibrary.wiley.com/store/10.1002/qj.699/asset/699_ftp.pdf?
v=1&t=iyznovi1&s=ebd583b403e12f513bcce80d3b7de4473987cac0.

Veliz-Cuba, A., Kilpatrick, Z. P., & Josić, K. (2016). Stochastic models of evidence
accumulation in changing environments. SIAM Review, 58, 264–289. http:
//dx.doi.org/10.1137/15M1028443, URL: http://arxiv.org/abs/1505.04195.

Visser, I. (2011). Seven things to remember about hidden Markov models:
A tutorial on Markovian models for time series. Journal of Mathematical
Psychology, 55, 403–415. http://dx.doi.org/10.1016/j.jmp.2011.08.002.

Wolpert, D., Ghahramani, Z., & Jordan, M. (1995). An internal model for
sensorimotor integration. Science, 269, 1880–1882. http://dx.doi.org/10.1126/
science.7569931.

Wonham, W. M. (1964). Some applications of stochastic differential equations
to optimal nonlinear filtering. Journal of the Society for Industrial and Applied
Mathematics Series A Control, 2, 347–369. http://dx.doi.org/10.1137/0302028.

Yang, T., Blom, H. A. P., & Mehta, P. G. (2014). The continuous-discrete time
feedback particle filter. In Proceedings of the American control conference (pp.
648–653). http://dx.doi.org/10.1109/ACC.2014.6859259.

Yang, T., Laugesen, R. S., Mehta, P. G., & Meyn, S. (2016). Multivariable feedback
particle filter. Automatica, 71, 10–23. http://dx.doi.org/10.1016/j.automatica.
2016.04.019, URL: https://arxiv.org/pdf/1303.1205v1.pdf, http://dx.doi.org/1
0.1016/j.automatica.2016.04.019, http://ac.els-cdn.com/S000510981630142X
/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-0000
0aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835.

Yang, T., Mehta, P. G., & Meyn, S. (2013). Feedback particle filter. Institute of
Electrical and Electronics Engineers. Transactions on Automatic Control, 58,
2465–2480. http://dx.doi.org/10.1109/TAC.2013.2258825.

Zakai, M. (1969). On the optimal filtering of diffusion processes. Zeitschrift fur
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 11, 230–243, URL: http://
link.springer.com/article/10.1007/BF00536382. http://www.springerlink.com/
index/Q730671QUQR1L044.pdf.

http://dx.doi.org/10.1038/nn1901
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2551734&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2551734&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2551734&tool=pmcentrez&rendertype=abstract
http://www.nature.com/doifinder/10.1038/nn1901
http://www.nature.com/doifinder/10.1038/nn1901
http://www.nature.com/doifinder/10.1038/nn1901
http://dx.doi.org/10.1007/s10463-009-0249-x
http://dx.doi.org/10.3150/12-BEJSP07
http://dx.doi.org/10.3150/12-BEJSP07
http://dx.doi.org/10.3150/12-BEJSP07
http://projecteuclid.org/euclid.bj/1377612857
http://epubs.siam.org/doi/pdf/10.1137/0302009
http://epubs.siam.org/doi/pdf/10.1137/0302009
http://epubs.siam.org/doi/pdf/10.1137/0302009
http://dx.doi.org/10.1007/978-1-4613-0007-6
http://dx.doi.org/10.1007/978-1-4613-0007-6
http://dx.doi.org/10.1007/978-1-4613-0007-6
http://link.springer.com/10.1007/978-1-4613-0007-6
http://dx.doi.org/10.17605/OSF.IO/4C9H
http://dx.doi.org/10.1017/CBO9781139941433.007
http://ebooks.cambridge.org/ref/id/CBO9781139941433A054
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb40
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb40
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb40
http://dx.doi.org/10.1137/S0040585X97977835
http://dx.doi.org/10.1137/S0040585X97977835
http://dx.doi.org/10.1137/S0040585X97977835
http://epubs.siam.org/doi/10.1137/S0040585X97977835
http://epubs.siam.org/doi/10.1137/S0040585X97977835
http://epubs.siam.org/doi/10.1137/S0040585X97977835
http://dx.doi.org/10.1016/j.jmp.2014.04.003
http://dx.doi.org/10.1016/j.jmp.2014.04.003
http://dx.doi.org/10.1016/j.jmp.2014.04.003
http://dx.doi.org/10.1016/j.jmp.2014.04.003
http://papers.nips.cc/paper/3841-know-thy-neighbour-a-normative-theory-of-synaptic-depression.pdf
http://papers.nips.cc/paper/3841-know-thy-neighbour-a-normative-theory-of-synaptic-depression.pdf
http://papers.nips.cc/paper/3841-know-thy-neighbour-a-normative-theory-of-synaptic-depression.pdf
http://dx.doi.org/10.1038/s41467-018-06561-y
http://dx.doi.org/10.1038/s41467-018-06561-y
http://dx.doi.org/10.1038/s41467-018-06561-y
http://arxiv.org/abs/1710.05945
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorialonhmmandapplications.pdf
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://ieeexplore.ieee.org/document/18626/
http://dx.doi.org/10.1162/NECO_a_00957
http://arxiv.org/abs/1803.01446
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00957
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00957
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00957
http://dx.doi.org/10.1016/j.jmp.2016.05.006
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb48
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb48
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb48
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb49
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb49
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb49
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb49
http://refhub.elsevier.com/S0022-2496(19)30165-8/sb49
http://dx.doi.org/10.1109/LCSYS.2019.2951093
http://dx.doi.org/10.1109/LCSYS.2019.2951093
http://dx.doi.org/10.1109/LCSYS.2019.2951093
http://arxiv.org/abs/1907.10143
https://ieeexplore.ieee.org/document/8890670/
https://ieeexplore.ieee.org/document/8890670/
https://ieeexplore.ieee.org/document/8890670/
http://dx.doi.org/10.1137/17M1125340
http://dx.doi.org/10.1137/17M1125340
http://dx.doi.org/10.1137/17M1125340
http://arxiv.org/abs/1703.07879
https://epubs.siam.org/doi/10.1137/17M1125340
https://epubs.siam.org/doi/10.1137/17M1125340
https://epubs.siam.org/doi/10.1137/17M1125340
http://dx.doi.org/10.1109/CDC.2016.7799105
https://arxiv.org/pdf/1603.05496v1.pdf
http://ieeexplore.ieee.org/document/7799105/
http://ieeexplore.ieee.org/document/7799105/
http://ieeexplore.ieee.org/document/7799105/
http://dx.doi.org/10.1115/1.4037780
http://arxiv.org/abs/1702.07241
http://arxiv.org/abs/1702.07241
http://arxiv.org/abs/1702.07241
https://asmedigitalcollection.asme.org/dynamicsystems/article/doi/10.1115/1.4037780/474492/Kalman-Filter-and-Its-Modern-Extensions-for-the
https://asmedigitalcollection.asme.org/dynamicsystems/article/doi/10.1115/1.4037780/474492/Kalman-Filter-and-Its-Modern-Extensions-for-the
https://asmedigitalcollection.asme.org/dynamicsystems/article/doi/10.1115/1.4037780/474492/Kalman-Filter-and-Its-Modern-Extensions-for-the
http://dx.doi.org/10.1152/jn.00697.2004
http://jn.physiology.org/cgi/doi/101152/jn.006972004
http://www.princeton.edu/rvan/acm217/ACM217.pdfcalculus,Filtering,andStochasticcontrol.pdf
http://www.princeton.edu/rvan/acm217/ACM217.pdfcalculus,Filtering,andStochasticcontrol.pdf
http://www.princeton.edu/rvan/acm217/ACM217.pdfcalculus,Filtering,andStochasticcontrol.pdf
http://dx.doi.org/10.1002/qj.699
http://onlinelibrary.wiley.com/store/10.1002/qj.699/asset/699_ftp.pdf?v=1&t=iyznovi1&s=ebd583b403e12f513bcce80d3b7de4473987cac0
http://onlinelibrary.wiley.com/store/10.1002/qj.699/asset/699_ftp.pdf?v=1&t=iyznovi1&s=ebd583b403e12f513bcce80d3b7de4473987cac0
http://onlinelibrary.wiley.com/store/10.1002/qj.699/asset/699_ftp.pdf?v=1&t=iyznovi1&s=ebd583b403e12f513bcce80d3b7de4473987cac0
http://dx.doi.org/10.1137/15M1028443
http://dx.doi.org/10.1137/15M1028443
http://dx.doi.org/10.1137/15M1028443
http://arxiv.org/abs/1505.04195
http://dx.doi.org/10.1016/j.jmp.2011.08.002
http://dx.doi.org/10.1126/science.7569931
http://dx.doi.org/10.1126/science.7569931
http://dx.doi.org/10.1126/science.7569931
http://dx.doi.org/10.1137/0302028
http://dx.doi.org/10.1109/ACC.2014.6859259
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
https://arxiv.org/pdf/1303.1205v1.pdf
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://dx.doi.org/10.1016/j.automatica.2016.04.019
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://ac.els-cdn.com/S000510981630142X/1-s2.0-S000510981630142X-main.pdf?_tid=86f73940-c6b8-11e6-9fcb-00000aacb361&acdnat=1482240832_857bbc5eb2ba02e92c0598e0a8403835
http://dx.doi.org/10.1109/TAC.2013.2258825
http://link.springer.com/article/10.1007/BF00536382
http://link.springer.com/article/10.1007/BF00536382
http://link.springer.com/article/10.1007/BF00536382
http://www.springerlink.com/index/Q730671QUQR1L044.pdf
http://www.springerlink.com/index/Q730671QUQR1L044.pdf
http://www.springerlink.com/index/Q730671QUQR1L044.pdf

	The Hitchhiker's guide to nonlinear filtering
	Introduction: A guide to the guide
	A view from space: from Bayes' rule to filtering
	Changes of measure
	Importance sampling

	Filtering in discrete time - an introductory example
	Continuous (state) space
	The Kalman filter
	Particle filtering in discrete time


	Knowing where your towel is: setting the stage for continuous-time models
	Signal models
	Markov chain
	Jump–diffusion process

	Observation model
	Continuous-time Gaussian noise
	Poisson noise


	The answer to life, the universe and (not quite) everything: the filtering equations
	Changes of probability measure — once again
	Filtering equations for observations corrupted by Gaussian noise
	A closed-form solution for a linear model: Kalman–Bucy filter
	Filtering equations for observations corrupted by Poisson noise
	Down to Earth - an example from decision making

	Don't panic: Approximate closed-form solutions
	The extended Kalman–Bucy filter and related approaches
	Assumed density filtering

	Approximations without infinite improbability drive: Particle methods
	Particle filtering in continuous time
	Weight dynamics in continuous time
	Equivalence between continuous-time particle filtering and bootstrap particle filter

	The feedback particle filter
	Particle filters in action

	The restaurant at the end of the universe: Take-away messages
	So long, and thanks for all the fish: acknowledgments
	Appendix A. Mostly harmless: detailed derivation steps
	Evolution equation of Radon–Nikodym derivative  Lt  (Eq. eq:Intro Filt - RadonNikodym evolution)
	Kushner–Stratonovich equation (Eq. eq:Intro Filt - Kushner Stratonovich equation)
	Kushner–Stratonovich equation for point-process observations (Eq. eq:Intro Filt - Kushner Stratonovich PP)
	ADF for point-process observations (Eqs. eq:Intro Filt - ADF PP mu and eq:Intro Filt - ADF PP Sigma)

	References


