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Abstract

Minimization of cortical prediction errors is believed to be a key canonical computation of the cerebral
cortex underlying perception, action and learning. However, it is still unclear how the cortex should form
and use knowledge about uncertainty in this process of prediction error minimization. Here we derive
neural dynamics minimizing prediction errors under the assumption that cortical areas must not only
predict the activity in other areas and sensory streams, but also jointly estimate the precision of their pre-
dictions. This leads to a dynamic modulatory balancing of cortical streams based on context-dependent
precision estimates. Moreover, the theory predicts the existence of second-order prediction errors, i.e.
errors on precision estimates, computed and propagated through the cortical hierarchy alongside clas-
sical prediction errors. These second-order errors are used to learn weights of synapses responsible for
precision estimation through an error-correcting synaptic learning rule. Finally, we propose a mapping
of the theory to cortical circuitry.

Introduction

The cerebral cortex has been described as an organ of prediction, where cortical areas attempt to predict
the activity in other areas or sensory streams. The computational goal of the cortex would then be to
minimize differences between these predictions and actual activity—prediction errors. Neural computations
realizing this goal have been proposed as canonical cortical computations [1–5] and as mechanisms sup-
porting the emergence of cognition [6, 7]. Additionally, adopting a probabilistic or Bayesian framework for
cortical processing, where uncertainty is taken into account, has proven useful [8, 9]. To harness the power
of the probabilistic framework, predictions made by cortical areas should not simply be single potential
representations in the target area but rather distributions over the space of potential representations.

In that case, normative theories based on variants of maximum likelihood estimation suggest that corti-
cal prediction errors should be weighted by the precision (reliability, inverse uncertainty) of the predictive
distributions. Humans and other animals have indeed been shown to weight prior knowledge and data
from multiple modalities by their relative precision during perceptual integration [10, 11], decision-making
[12] and sensorimotor control [13, 14], even when the precision changes dynamically [15–18]. This modu-
latory weighting of prediction errors has gained a central place in the branch of cognitive sciences based
on predictive coding [19–21], most notably in models of attention [22–25] and in neuropsychiatry [26–30].
Potential implementations in the cerebral cortex have been discussed, notably in cortico-pulvinar loops [31]
or more generally through the action of neuromodulation [32–35]. However, a neurally plausible theoretical
formalization of learned and context-dependent prediction error modulation is still missing.

In this work we start with the idea that top-down cortico-cortical gain modulation implements a form
of precision weighting of prediction errors [36]. To formalize this idea, we introduce precision estimates
computed as a function of current higher-level representations. This in line with rare cases where precision
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was defined as a function of current neuronal activity [22, 31], and in contrast with the majority of literature
which formally defines precision as a parameter of the model (e.g. [2, 37, 38]). With this formulation,
precision estimates can have a fast, dynamic and context-dependent influence on neural dynamics, while
parameters of the precision estimation function, encoded in synaptic weights, slowly integrate statistics of
the environment.

We then derive neural dynamics of predictive coding with this additional ingredient. In the resulting neuronal
dynamics, the relative importance accorded to bottom-up and top-down cortical streams is dynamically
adapted based on estimated precision, in line with Bayes-optimal computation. Additionally, the estimated
precision do not have a purely modulatory influence, as the (additive) correction of second-order errors
(i.e. errors on the precision estimates) also plays a major role. Moreover, we show that the natural way for
a cortical area to learn to estimate the precision of its predictions is through a local synaptic learning rule
correcting for postsynaptic second-order errors. Finally, we propose a mapping of our dynamics to cortical
circuitry that is consistent with the known laminar target pattern of feedforward and feedback cortico-cortical
connections and neural responses of specific cortical cell types.

Results

An energy for cortical function

We propose that one of the goals of the cerebral cortex is to infer a set of latent representations z coherent with
an internal model p(x, z|θ) for the current observation x coming from input streams (e.g. sensory information,
thalamic activity, etc.). Following the organization of the cortex into specialized areas, we decompose latent
representations z into representations u1, . . . ,un corresponding to the membrane potentials of neuronal
populations in n areas, and denote u0 the observation x (see Fig. 1a). For example, a part of the observation
u0 might be encoded in the activity of cells in the retina or the lateral geniculate nucleus (LGN), and latent
cortical representations u1, . . . ,un might then encode local orientation (V1), shape (IT), color (V4), motion
(MT), etc. On longer timescales the cortex should learn parameters θ of the internal model, corresponding
to weights of synaptic connections, so as to better represent its environment.

As a simplifying assumption, we organize areas in a strict generative hierarchy, such that area l+1 tries
to predict the activity of area l, and nothing else (see Fig. 1a). It does so by sending its output rates
rl+1 = ϕ(ul+1) through top-down synapses with plastic weights Wl, where ϕ represents the neuronal
activation function. Additionally, area l+1 similarly estimates and conveys to area l the precision of its
prediction through top-down synapses with non-negative plastic weights Al. We further hypothesise that
the resulting predictive distribution is the (entropy-maximizing) normal distribution with mean Wlrl+1

and precision vector λl = Alrl+1 (see Fig. 1b). Crucially, the precision is a parameterized function of
current higher-level representations, similarly to the mean, and not simply a parameter of the model (see
Fig. 1c). This is simply an extension of the notion of prediction, where cortical areas predict the precision
(second-order information) in addition of the mean (first-order information).

We can now write our energy or objective for cortical function as the negative log-likelihood

E = − log p(x, z|θ) = 1

2

n−1∑
l=0

∥el∥2λl
− 1

2

n−1∑
l=0

| logλl|+ const , (1)

where el = ul −Wlrl+1 is a prediction error, ∥ · ∥λl
denotes the norm with λl = Alrl+1 as a metric (i.e. a

variance-normalized norm) and | · | denotes (unusually) the sum of components. Note that ∥el∥λl
is the

classical Euclidean norm of standardized errors ∥el/σl∥, where σ2
l = 1/λl is the estimated variance vector.

In other words, here we measure distances as numbers of (estimated) standard deviations away from the
(estimated) mean rather than more simply as the Euclidean distance to the (estimated) mean (see Fig. 1d).

From the Bayesian perspective, minimization of E with respect to z leads to a maximum a posteriori estimate
of latent variables z∗. Then, we can update parameters θ such that the model assigns a higher probability
for the pair of current observation x and optimal latent variables z∗, which can be done again by minimizing
E, this time with respect to θ. This can be seen as a simplified version of the expectation-maximization
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algorithm [39] where we compute a point estimate of latent variables instead of a full posterior distribution.

From the perspective of energy-based models, E as described in the right-hand side of Eqn. 1 seems to be
an energy worth minimizing. The first term is a measure of distance between actual representations and
predictions. This measure takes into account the precision of predictions: the more a prediction was deemed
precise, the more a deviation from it matters. The second term indicates that high precision is preferable.
That is, as long as estimating a high precision does not excessively drive up the first term: there must
be a balance between the estimated precision and the (average) magnitude of prediction errors. Moreover,
this same second term also acts as a regularizer to avoid very small precision estimates, which would be a
non-informative solution to minimize the first term.

Figure 1: Predictive distributions and generalized distance in the cortical hierarchy. (a) Proba-
bilistic model. Latent representations [ul] are organized in a strict generative hierarchy. (b) Predictions are Gaussian distri-
butions. Both the mean [Wlrl+1] (first-order) and the precision [λl = Alrl+1] (inverse variance, second-order) are predicted
as a function of higher-level activity. (ci) The prediction made from the context (CTX) about the presence of a specific object
(OBJ) can be more or less precise/confident depending on the context. (cii) The prediction made from the presence of a object
about the presence of specific features (FTR, e.g. color, shape, etc.) can be more or less precise/confident depending on the
object. (d) Current representations [ul] must be compared with predictive distributions. (di) Here the green and yellow points
are two possible potential current representations [ul] and the 2d Gaussian is the predictive distribution [p(ul|ul+1)]. In that
case, the Euclidean distance between points and the mean of the distribution [∥el∥= ∥ul −Wlrl+1∥] is insufficient to capture
our intuition that the green point lies farther outside the distribution than the yellow one. (dii) By taking the precision [λl] as
a metric, or in other words by measuring distances in numbers of standard deviations along axes, we define a more appropriate
measure of distance between a point and a Gaussian distribution [∥el∥λl

], and our intuition is fulfilled. This is equivalent to
measuring the usual Euclidean distance but in a rescaled space where the predictive distribution is the unit circle.

Neuronal dynamics with precision estimation

Similarly to previous work [1, 2, 40, 41], we now derive neuronal dynamics minimizing the energy E through
gradient descent. Moreover, here we make use of our precision estimates λl as metrics for our descent [42].
Note that, since the precision is the Hessian of the Gaussian negative log-likelihood, the resulting dynamics
can be interpreted as an approximate second-order optimization scheme (see Methods). This leads to the
leaky neuronal dynamics

τ u̇l = −σ2
l ◦ ∂E/∂ul = −ul +Wlrl+1 + σ2

l ◦ al , (2)

integrating top-down predictions Wlrl+1 and (uncertainty-weighted) total propagated errors

al = r′l ◦ (W T
l−1(λl−1 ◦ el−1) +AT

l−1δl−1) (3)

defined as the sum of precision-weighted prediction errors λl ◦ el and second-order errors δl = (σ2
l − e2l )/2,

both propagated upwards from the lower area (see Fig. 2a). Here ◦ is the componentwise (Hadamard)
product and e2l = el ◦ el. The second-order errors δl are not errors on the prediction of the mean Wlrl+1
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but errors on the precision estimate λl = Alrl+1, which are expected to be on average 0 if and only if λl

correctly captures the true precision. Following previous work [43], we suppose that total propagated errors
al are encoded in the apical dendrites of cortical neurons with somatic membrane potential ul.

These neuronal dynamics (Eqs. 2 and 3) entail two major points of interest, one of gain modulation of errors
based on precision estimates (see Fig. 2b) and one of second-order error propagation (see Fig. 2c). In the
following section we complete our theoretical framework by deriving synaptic learning rules for parameters
Wl and Al. We then come back to neuronal dynamics and unpack further these two points of interest.

Figure 2: Neuronal dynamics of predictive coding with adaptive precision estimation. (a) A
schematic depiction of neuronal dynamics (Eqs. 2 and 3). Representations [ul] are encoded in the somatic membrane potential
of pyramidal cells. Prediction errors [el−1] are first computed by comparing predictions [Wl−1rl] with actual activity or
data [ul−1]. (b) Adaptive balancing of cortical streams based on precision, realized through prediction error modulation.
Prediction errors are weighted multiplicatively by the estimated precision of the prediction [λl−1 = Al−1rl]. The weighted

errors are then propagated upwards [W T
l−1], and weighted divisively by the estimated precision of the higher-level prediction

[λl = Alrl+1] (multiplication by the prior variance [σ2
l ]). (c) Second-order error propagation. Second-order errors [δl−1]

are computed by comparing inverse precision estimates [σ2
l−1 = 1/λl−1] and squared prediction errors [e2l−1]. They are then

uppropagated [AT
l−1] and integrated alongside uppropagated prediction errors into the total error [al] which is then used in

inference dynamics.

Error-correcting synaptic learning of precision

At equilibrium of neuronal dynamics, weights of synapses carrying predictions can be learned following the
gradient

ẇij
l ∝− ∂E/∂wij

l = λi
le

i
lr

j
l+1 , (4)

where wij
l is the prediction weight from neuron j in area l+1 to neuron i in area l, λi

le
i
l is the postsynaptic

precision-weighted prediction error and rjl+1 is the presynaptic rate. This is the classical learning rule for
prediction weights in predictive coding.

Weights of synapses carrying precision estimates can also be learned following the gradient of E. The partial
derivative −∂E/∂aijl = δl

irjl+1 indicates that the energy-minimizing update for precision estimation weights

aijl is one that corrects for postsynaptic second-order errors. To ensure that all components of λl = Alrl+1

remain positive, we additionally want weights aijl to remain non-negative at all time. That is necessary as
λl approximates an inverse variance, which enters both in the energy (Eqn. 1) and the neuronal dynamics
(Eqn. 2) as a metric. To enforce this, we postulate that all weights are initialized to positive values and that
learning is modulated by the current weight, essentially preventing weights from crossing 0. Since all aijl
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Figure 3: Error-correcting synaptic learning. (a) In these simulations, we consider a higher area with Nl+1

neurons and a lower area with Nl neurons. Specifically, here we take Nl+1 = Nl = 100. The activity vector in the higher area
can take Nc different values [rn, n=1, . . . , Nc], to each of which is associated a different mean [µn] and a different variance
[σ2

n]. The activity in the lower area is then sampled from the Gaussian distribution with this mean and variance. Predictions
[Wri] and precision estimates [Ari] are formed from the higher-level representation and prediction errors [e = x−Wri] and
second-order errors [δ = 1/Ari−e2] are computed and used to learn parameters [W and A]. For simulations marked (random),
higher-level representations are random binary vectors with an average of 50% of ones. For simulations marked (one-hot),
higher-level representations are one-hot encoded. (b) Here we show that with the learning rule Eqn. 4 the network correctly
learns to estimate the means [µn, n=1, . . . , Nc] from higher-level activity [rn, n=1, . . . , Nc]. In these simulations we suppose
that the precision estimate is 1. (c) Here we show that with the learning rule Eqn. 5 the network correctly learns to estimate
the precisions [1/σ2

n] from higher-level activity [rn].

then stay positive, we can interpret this as a simple modulation of the learning rate for precision learning.
This leads to the learning rule

ȧijl ∝− aijl ∂E/∂aijl = aijl δ
i
lr

j
l+1 . (5)

We proceed to show in simulations that Eqs. 4 and 5 can indeed learn correct mean and precision estimates
as a function of higher-level activity. In our simulations, we first randomly select an underlying context.
This context determines both the data distribution, from which we sample a data point, and the higher-level
representation (see Fig. 3a). The prediction and the precision estimate are functions of the higher-level
representation associated with this context. Prediction errors are computed as the distance between the
sampled data point and the prediction and are used to learn prediction weights following Eqn. 4, so as to
estimate the mean of the data distribution associated with this context (see Fig. 3b). Second-order errors
are then computed as the distance between precision estimates and the squared prediction errors and are
used to learn the precision estimation weights following Eqn. 5, so as to estimate the precision of the data
distribution associated with this context (see Fig. 3c).

These two similar learning rules simply state that synaptic weights evolve towards values that lead to
smaller remaining errors. Importantly, all the information needed for learning, namely the presynaptic rate,
postsynaptic error and current synaptic weight, is present close to the synapse. With our use of precision
estimates as metrics, Eqn. 5 might be seen as a rule for metric learning. Having developed a way to learn
top-down precision estimates, we will now further examine how these are used in neuronal dynamics and
demonstrate their computational utility.

Adaptive balancing of cortical streams based on precision

For the neuronal dynamics in our model (Eqs. 2 and 3), the relative importance given to top-down predictions
and bottom-up prediction errors is controlled by two mechanisms that both modulate the gain of prediction
errors. First, the estimated precision of top-down predictions about what the activity of a neuron should be
(the prior) impacts divisively the importance of bottom-up errors in the inference dynamics of this neuron
(see Fig. 4a). Second, the estimated precision of predictions that a neuron make about what the activity of
other neurons should be impacts multiplicatively the importance of errors entailed by these predictions (see
Fig. 4b). This weighting is proportional to the more classical Bayes-optimal weighting of top-down prediction
(akin to prior) and bottom-up errors (akin to data) by their respective reliabilities, and leads to a maximum
a posteriori estimate of latent variables at equilibrium of neuronal dynamics (Eqn. 2). This is useful when
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integrating information from sources with different levels of reliability (or noise), as, for example, necessary
during multimodal integration (see Fig. 3c and Methods).

Figure 4: Adaptive balancing of cortical streams based on precision. (a) Divisive weighting of errors by
the estimated precision of top-down predictions about what the activity of a neuron should be (the prior), corresponding to the
multiplicative term [σ2

l = 1/Alrl+1 in Eqn. 2]. (b) Multiplicative weighting of errors by the estimated precision of predictions
that a neuron make about what the activity of other neurons should be [λl−1]. (c) Approximate Bayes-optimal computation in
a volatile environment. We consider Nc different classes to which we associated Nc different priors (µi,σ

2
i ) and data uncertainty

λi, i ∈ [1, Nc]. The goal is to infer true latent x ∼ N (µi,σ
2
i ) from noisy data d ∼ N (x, 1/λi) and prior µi. We do that in four

different ways that differ in how they take into account uncertainty and precision. (Bayes-optimal) a Bayes-optimal estimate,
with knowledge of true prior uncertainty and true data precision (precision estimates) our dynamics, with knowledge of true
prior uncertainty and an estimate of data precision as a function of current representation (mean precision) an estimate with
knowledge only of the mean prior uncertainty and data precision across classes (no weighting) an estimate blind to uncertainty
and precision. We plot the average distance between each estimate and the true latent x. The error bars indicate the standard
deviation.

At the level of a cortical area, the top-down precision estimate controls the balance of bottom-up and top-
down information on a neuron-by-neuron basis, providing fine-grained control over what is attended to. We
emphasize that, with our formulation of precision estimates as a function of higher-level representations, we
can encompass state-, context-, task- or feature- dependent precision signals, depending on what the higher-
level representations encode. Moreover, as higher-level representations change, so do the precision signals,
providing a mechanism to explain the observed trial-to-trial variability of precision weighting in animals.

Second-order error propagation

In neuronal dynamics (Eqs. 2 and 3), second-order errors δl are propagated through the cortical hierarchy
alongside classical precision-weighted prediction errors λl ◦ el. This forms a second-order stream where
cortical areas exchange precision estimates and second-order errors (see Fig. 5a).

To better understand the computational role of this second-order error propagation, we place a network
without hidden layers (see Fig. 5b) in supervised learning settings on simple nonlinear binary classification
tasks (see Fig 5ci and Methods). Parameters are learned following Eqs. 4 and 5 and, as expected, the
precision signal after learning represents the class-specific precision. With our dynamics (see Fig. 5cii) but
not with classical predictive coding dynamics (see Fig. 5ciii), the network without hidden layers can solve
these nonlinear classification tasks (see Fig. 5d).

At a computational level, this difference can be understood by looking at the way we measure distances.
With our model we use the variance-normalized distance between the input and the class distributions,
whereas classical predictive coding uses the Euclidean distance between the input and the means of class
distributions. At an algorithmic level, the capacity of our network to solve these tasks comes from the
computation and propagation of second-order errors. To minimize second-order errors, the network must
not only choose the class whose point prediction is closest to the data point (non-informative here), but also
the class that best predicts the remaining distance between point prediction and data.
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Figure 5: Second-order errors propagation for classification. (a) A second-order cortical stream where
precision estimates and second-order errors are exchanged between cortical areas. (b) A 2x2 network for binary classification.
During learning, the X and Y data are sampled from one of the two class distributions and the activity of neurons representing
the class is clamped to the one-hot encoded correct class. Parameters [W ,A] are then learned following Eqs. 4 and 5. During
inference, the activity of neurons representing the class follows neuronal dynamics (without top-down influence) and we read
the selected class as the one corresponding to the most active neuron. Prediction error (first-order) propagation is omitted
in the depiction. (c) The two columns depicts two different tasks. (ci) True class distributions. (cii) Classification with
second-order error propagation. (ciii) Classification without second-order error propagation. (d) Classification accuracy on
the task presented in ci left.

Precision estimation in cortical circuits

We now turn to the task of exploring how our dynamics could be realized in cortical circuits (see Fig. 6). We
classically postulate that latent variables ul are encoded in the somatic activity of a population of pyramidal
neurons L6p situated in infragranular cortical layers. Here we choose specifically intracortical pyramidal
cells of layer 6 since, as demanded by our theoretical framework, they receive the majority of their input
from intracortical long-range projection neurons [44] and send top-down projections to lower cortical areas
[45–47]. We propose that these projections notably carry predictions [48–51], but also precision estimates.
Following experimental evidence of error encoding in pyramidal cells of cortical layer 2/3 [52–55], we propose
that precision-weighted prediction errors λl ◦el and second-order errors δl are computed by two populations
of pyramidal neurons situated in supragranular layers, respectively L3e and L3δ. Recent evidence suggests
that L3e expresses Adamts2 and Rrad [56], while no functional role has yet been proposed for the third class
of supragranular pyramidal cells expressing Agmat, which could be L3δ. Additionally, our theory suggests
that both type of errors should be integrated into the total propagated errors al (as defined in Eqn. 3),
which we propose takes place in distal apical dendrites of L6p situated in L4/5a [57], in line with previous
work postulating error encoding in segregated dendritic compartments [43, 58].

We now concern ourselves with the precision-balancing of cortical streams entailed by our theory through
inhibition and disinhibition of errors. We propose that raw prediction errors el are computed in dendrites of
L3e by comparing local and top-down inputs from L6p. Precision-weighting of prediction errors might then
be realized through top-down gain modulation targeting these dendrites. We propose that this is (at least
partially) achieved through a well-known dishinibitory circuit motif involving VIP-expressing interneurons
receiving top-down input and inhibiting SST-expressing interneurons which in turn inhibits dendrites of L3e
[59–61]. This would entail that VIPs encode a precision signal and supragranular SSTs a variance signal.
This is supported by recent 2-photon imaging on rodents placed in an oddball paradigm, where activity
ramps up in VIPs and decays in SSTs as a stimulus is repeated (and both show no sign of prediction error
computation, contrarily to pyramidal cells) [62]. Moreover, we propose that the uncertainty modulation of
total bottom-up errors entailed by our theory (the factor σ2

l in Eqn. 2) is elicited through modulation of
L6p apical dendrites by infragranular SST interneurons, which would then encode a precision signal. The
laminar specificity of SSTs activity [63] supports this hypothesis.

Finally, we make tentative propositions for circuit-level mechanisms underlying second-order error compu-
tation in L3δ. To compute second-order errors, precision estimates must be compared to the magnitude of
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Figure 6: Precision estimation in cortical circuits. Cortical circuit for neuronal dynamics of inference (as
described in Eqn. 2 [τ u̇l = −ul+Wlrl+1+σ2

l ◦al] and Eqn. 3 [al = r′
l ◦(W

T
l−1(λl−1 ◦el−1)+AT

l−1δl−1)]). Representations

[ul] are held in the somatic membrane potential of L6p. Top-down synapses carrying predictions [Wlrl+1] directly excite

L6p at proximal dendrites (5). Bottom-up precision-weighted prediction errors [W T
l−1(λl−1 ◦ el−1)] and second-order errors

[AT
l−1δl−1] are integrated into total error [al] in the distal dendrites of L6p as described in Eqn. 3 (3). This total error

is then weighted by the prior uncertainty [σ2
l ] through divisive dendritic inhibition realized by infragranular SST-expressing

interneurons (L56-SST) (4). Top-down predictions [Wlrl+1] and local representations [ul] are compared in dendrites of L3e.
Precision-weighting is then realized through gain modulation of these dendrites by the disinhibitory VIP-expressing (VIP) and
SST-expressing (L23-SST) interneurons motif (1). L3δ integrate top-down precision estimates [λl] and local squared precision-
weighted prediction errors [(λl◦el)2] encoded in basket cells (BC) into re-weighted second-order errors [λl−(λl◦el)2 = λ2

l ◦δl].
Second-order errors [δl] are then sent up using the modulatory influence of chandelier cells (ChC) on the axonal initial segment
of L3δ.

prediction errors. We propose that the magnitude of (precision-weighted) prediction errors is computed in
PV-expressing basket cells [64] from local L3e inputs. At a circuit level, L3e is believed to be separated into
two populations L3e+ and L3e− encoding the positive and negative part of λl ◦ el respectively [54]. If this
is the case, then excitatory projections from L3e+ and L3e− to local basket cells, eventually followed by a
nonlinear integration by basket cells [65], would be sufficient to perform the needed computation. Basket
cells would then project to L3δ realizing a subtractive lateral inhibition [66]. Additionally, we suppose that
L3δ receives top-down precision estimates. Now with this setup, the quantity encoded in L3δ would be
λl − (λl ◦ el)2 = λ2

l ◦ δl. This is in fact another form of second-order errors, which could be interesting on
their own, but to send up δl as suggested by our theoretical framework, we postulate that the output of
L3δ is modulated by chandelier cells, the other main class of PV-expressing interneurons, which would then
encode a squared precision signal. In accordance with this hypothesis, chandelier cells almost exclusively
target the axonal initial segment of pyramidal cells and have been shown to be capable of both promoting
and inhibiting action potential generation [67]. These propositions, though they are unlikely to prove exactly
correct, could provide starting points for experimental investigation of cortical second-order errors.
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Discussion

In this work we introduced diagonal estimates of the precision matrix as a function of current higher-level
activity and derived neural dynamics of predictive coding with this additional ingredient. In the resulting
neuronal dynamics, the relative importance of bottom-up and top-down cortical streams is controlled based
on precision estimates, enabling efficient integration of cues with different context-dependent reliabilities. We
proposed that in cortical circuits this weighting takes the form of top-down gain modulation realized through
a combination of disinhibitory interneuron circuits targeting layer 2/3 pyramidal cells and apical modulation
of layer 5/6 pyramidal cells. Moreover, the conditioning of precision estimates on current activity also led
to the apparition of second-order prediction errors. Like classical prediction errors, second-order errors are
propagated through the cortical hierarchy, leading to nonlinear classification capabilities in a single area.
Additionally, these new errors are used for learning weights of synapses responsible for precision estimation.

The brain may use different forms of precision estimates and not only diagonal (vector) estimates as we
explored in this work. Obvious alternatives would be scalar and full matrix precision estimates. First, scalar
estimates would define the importance granted to all errors in an area, and in that case precision-weighting
of errors might be realized through nonspecific release of neuromodulators. Such estimates might be useful
for multimodal integration, where one modality as a whole might be reliable or not given context (e.g. vision
during the day or during the night). For example, noradrenaline seems to encode environmental volatility
[34]. Second, at the other extreme, we might consider full precision matrices. We would then be minimizing
an approximate Mahalanobis distance [68] between representations and predictions, taking into account not
only stretch but also skew in our metric. Doing so might lead to a theoretically grounded account of lateral
connections between prediction error nodes [2], with links to the notion of partial correlations [69]. Moreover,
we have conditioned precision estimates on the activity of the same population on which predictions (mean
estimates) are conditioned. An alternative would have been to condition precision estimates on a new set
of latent variables potentially held by another population of cortical neurons, disentangling the tasks of
mean and precision estimation. Furthermore, these estimates might not only be conditioned on cortical but
also on subcortical activity. This might help assign computational roles to interactions between the cortex
and subcortical structures. Of course all those mechanisms need not be mutually exclusive and could be
combined into more complex precision estimates, potentially increasing the explanatory power of predictive
coding models of cortical circuits [70]. Note that adaptive precision-weighting and second-order errors might
be crucial not only for sensory processes, but also in action selection following the growing tradition of active
inference [71].

The dynamics that we presented share some classical weaknesses of predictive coding dynamics concerning
biological plausibility that have been tackled elsewhere: weight transport [72, 73], long inference [74], encod-
ing of signed errors [43, 54] and one-to-one connections [75]. Moreover, our learning rules Eqs. 4 and 5 only
fulfill weak criteria of locality, as all the information necessary for learning is indeed present in a local patch
of cortex around the synapse, but not necessarily precisely at the synapse. Note that to derive our synaptic
learning rules we chose implicitly to use the Euclidean metric in our descent scheme. We could consider
other metrics, as we did for neuronal dynamics (Eqn. 2), and this might lead to more biologically plausible
learning rules. For example, previous work has argued that weights of synapses carrying predictions and
targeting proximal dendrites of infragranular pyramidal cells might be learned using the apical activity at
equilibrium of neuronal dynamics [43], which in our case would correspond to the learning rule entailed by
using, again, precision estimates as a metric for synaptic learning. Additionally, our assumption of a strict
hierarchy of latent variables seems at odds with known connectivity between cortical areas. Finally, our
account of cortical and notably interneuron circuitry is still incomplete and should definitively be refined
and challenged through interactions with experimental work. We believe that our work might provide a
theoretical framework to interpret existing experimental results and fruitful directions for following exper-
iments. More than a specific set of predictions, we would like to convey that looking for cortical precision
estimates and second-order errors signals might be an interesting venue. More specifically one could look for
precision, uncertainty or error magnitude signals in interneuron activity.

In our model, precision estimates computed at each level of the hierarchy as a function of current repre-
sentations are used as soft multiplicative attention masks on errors, not unlike modern machine learning
takes on attention [76]. We hope that our formulation will help link accounts of attention in the predictive
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coding framework [22] and in machine learning. Anecdotally, VIP-expressing interneurons were described
by experimentalists as ”generating a spotlight of attention” [77].

Precision-weighting of prediction errors is often a central element in leading models in the field of neu-
ropsychiatry [26–30]. We hope that this step towards a better theoretical and computational grasp of this
mechanism will help in gaining a more holistic understanding of psychopathologies and altered states of
mind under the predictive processing framework. The separation of neural mechanisms for prior and data
weighting in our model (respectively L6p apical modulation and disinhibition of L3p dendrites) might prove
critical to extend models based on pathological over- or under-weighting of either prior or data in a process
of Bayesian integration to the whole cortical hierarchy, where activity at one level both represents data for
the level above and generates prior for the level below. Moreover, our proposed computational roles for
interneuron circuitry might help link accounts of neuropsychiatric disorders in terms of precision-weighting
of errors to accounts in terms of cortical excitation-inhibition balance [78, 79]. Future work might include
studying the effects of pathological precision estimation in simulations.

Finally, the somatic integration of apical activity in infragranular pyramidal cells has recently been shown
to be crucial for perceptual decision-making [80], impaired in anesthesia [81] and placed at the center of
theories of conscious processing [82]. Of particular importance is the gain of the coupling compartment
between apical and perisomatic regions, controlling the balance between bottom-up and top-down cortical
streams. The authors of [82] proposed higher-order thalamus as a major player in the game of controlling
this coupling, but also added cortico-cortical and potentially more selective control as an outstanding area
of investigation. In our framework, the uncertainty modulation of L6p apical dendrites (or more precisely, of
the coupling compartment) would play such a role of locally controlling the relative importance of top-down
predictions and bottom-up prediction errors in the inference process (see e.g. Fig. 4a).

Methods

Probabilistic model
Here we precise the form of the probabilistic model. We introduce a notion of strict hierarchy between levels of latent repre-
sentations by supposing that the joint can be decomposed as

p(u0,u1, . . . ,un|θ) ∝ p(u0|u1,θ)p(u1|u2,θ) . . . p(un−1|un,θ) (6)

which can be justified by assuming a Markov property ∀k, p(uk|uk+1, . . . ,un,θ) = p(uk|uk+1,θ) and a uniform top level
prior un ∼ U . Since the distribution of ul is conditioned on ul+1, we call this a generative hierarchy.

We further assume that predictions ul|ul+1 follow a multivariate Gaussian distribution

ul|ul+1 ∼ N
(
Wlrl+1, diag(Alrl+1)

−1
)

(7)

with mean at point predictions Wlrl+1 and diagonal covariance matrix with positive diagonal σ2
l = 1/Alrl+1.

Under these two assumptions described in Eqs. 6 and 7, we have the right-hand side equality in Eqn. 1, which we derive in
more details in Supplementary Note 1.

Precision estimates as metrics
Modern machine learning has made extensive use of Euclidean gradient descent, such that we now often confound the gradient
and the partial derivative [42]. But more generally, for a metric characterized by the positive definite metric tensor D, the
gradient of the energy is given by

(∇E) (x) = D−1 ∂E

∂x
(8)

In this work we chose precision estimates as a metric for neuronal dynamics Eqn. 2, i.e. D = diag(λl). There are two
justifications for this. First and foremost, the resulting neuronal dynamics Eqn. 2 appears to us more neurally plausible, with
the explicit leak −ul and the apical modulation factor σ2

l . Second, remark that the precision is the Hessian of the Gaussian
negative log-likelihood

∂2 − log f(u;m,v)

∂u2
= diag(1/v) (9)

with f the density of a multivariate Gaussian and, importantly, m,v not functions of u. Second derivatives of the objective are
known to have desirable properties as metrics, from Newton’s method to natural gradient descent [83]. Of course, the precision
is only a crude approximation of the actual Hessian ∂2E/∂u2

l , since both means and variances in E are in fact functions of
current activity u. In other words, if we make the approximation of ignoring dependencies of distribution parameters on current
activity, the precision is the Hessian of the energy. This is equivalent to considering at each level l that the activity in level
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l+1 is fixed. In short, our approximation abandons mathematical exactness but retains the idea of a second derivative metric.
An intuition of the effect on neuronal dynamics Eqn. 2 is as normalizing the balance of importance between local and lower
prediction errors such that the importance of local errors is 1.

Now, to take precision estimates λl = Alrl+1 as metrics, we do need to be cautious that elements of λl are strictly positive.
Indeed this a condition for λl to even define a proper (Riemannian) metric. Let us look at how the precision estimation weights

evolve through time as defined by Eqn. 5. For each weight aijl in Al, we have

lim
a
ij
l

→0+
ȧijl = 0 (10)

Hence, if we initialize elements of Al to positive values, then at all time aijl > 0. If we additionally assume that at all time at
least one element of rl+1 is nonzero, then at all time elements of λl are strictly positive. With this, skeptics about this change
of metric can at least be reassured that we are following a descent direction on E.

Simulation details
Pseudocode for simulations is available in the Supplementary Information, and an implementation in Julia is available at
github.com/arnogranier/precision-estimation.

For all simulations, we take ϕ the ReLU activation function.

Precision learning

For simulations presented in Fig. 3c, we follow the simulation setup presented in Fig. 3a and described in more details bellow
and in Supplementary Algorithm 1.

We consider a higher area with Nl+1 neurons and a lower area with Nl neurons. We consider Nc different classes of inputs, each
with its own distribution N (µi,σ

2
i ), i ∈ [1, Nc], where µi and σ2

i are vectors of size Nl. We initialize all µi following a U(−1, 1)
and all σ2

i following a U(1/4, 1). Then we choose the representational mode of the higher area, either random binary vectors or
one-hot encoded and initialize higher-level representations ri, i ∈ [1, Nc] as random binary vectors of size Nl+1 with on average
p ones or one-hot encoded i in Nl+1, respectively. The precision estimation matrix A is then initialized as a matrix filled with
α, with α = 1/pNl+1 for the random binary vector case and α = 1 for the one-hot encoded case. We then repeat the following
procedure for multiple epochs (1) For each class, sample a data xi from N (µi,σ

2
i ) (2) Set the higher-level representation to ri

(3) Compute the precision estimate λi = Ari (4) Compute the second-order error δi = (1/λi − (xi − µi)
2)/2 (5) Update A

following Eqn. 5. In Fig. 3c, we plot the evolution of (
√
NlNc)−1

∑
i ∥σ2

i − 1/Ari∥ through epochs. For Fig. 3c, parameters
are T = 10000, Nl+1 = Nl = 100, η = 0.001 with Nc varying depending on the simulation.

A similar procedure is used for Fig. 3b, but following Eqn. 4.

Approximate Bayes-optimal integration

For simulations presented in Fig. 4c, we follow the simulation procedure described bellow. Pseudocode for these simulations is
presented in Supplementary Algorithm 2 and a mathematical intuition is given in Supplementary Note 3.

We consider a higher area with Nl+1 neurons and a lower area with Nl neurons. We consider Nc different classes of inputs,
each with its own distribution N (µi,σ

2
i ), i ∈ [1, Nc], where µi and σ2

i are vectors of size Nl. We initialize all µi following
a U(0, 2/Nl) and all σ2

i by randomly choosing each component in {0.1, 2} with a 50% chance. We initialize the precision

estimation matrix A following a U(0, 2). We additionally collect the mean prior variance vector across classes σ̄2 = 1
Nc

∑
i σ

2
i

and the mean data precision vector across classes λ̄ = 1
Nc

∑
i Aϕ(µi). We then repeat across epochs the following procedure.

For each class i (1) we sample a true target latent x ∼ N (µi,σ
2
i ). We consider that the precision estimation weights are correct

such that the precision of the data is λ = Aϕ(x). (2) Then we sample noisy data. Here we want to focus on precision estimation
and not mean prediction, so we suppose that the prediction function is the identity, and we then sample data d ∼ N (x, 1/λ).
The goal is then to infer x from data d and prior µi. We do that in four different ways that differ in how they take into account
uncertainty and precision:
(3i) a Bayes-optimal estimate, with knowledge of true prior variance and true data precision

u = (λ ◦ d+ σ−2
i ◦ µi)/(λ+ σ−2

i ) (11)

(3ii) our dynamics, with knowledge of true prior variance and data precision estimation

τ u̇ = −u+ µi + σ2
i ◦Aϕ(u) ◦ (d− u) (12)

(3iii) an estimate with knowledge only of the mean prior variance and data precision across classes

τ u̇ = −u+ µi + σ̄ ◦ λ̄ ◦ (d− u) (13)

(3iv) an estimate blind to variance and precision

τ u̇ = −u+ µi + (d− u) (14)

In Fig. 4c, we plot the average distance between each estimate and the true latent (NcNe
√
Nl)

−1∥x − u∥ and its standard
deviation.
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Nonlinear binary classification

For simulations presented in Fig. 5cd , we built the datasets by sampling N = 1000 points (x1, y1), . . . , (xN , yN ) from each
of the gaussian distributions represented in Fig. 5ci (first column: N ([0, 0], diag([1, 1/4])) and N ([0, 0], diag([1/4, 1])), second
column: N ([0, 0], diag([9, 9])) and N ([0, 0], diag([1/3, 1/3])), represented by their 99.7% confidence ellipses) and attaching the
corresponding class label (either red or blue).

We then build a 2x2 network where the top level activity is a one-hot representation of the class and the bottom level activity
is the coordinate in space (x, y). We train this network in supervised learning settings on the dataset by clamping [84] both
top and bottom area to the corresponding elements of the dataset and perform one step of parameters learning as described in
Eqs. 4 and 5.

We then test the capacity of our network to classify data by only clamping the bottom level to the data and letting the top
level activity follow Eqn. 2. We then select as the output class index the index of the maximum top level activity, and plot the
corresponding classification in Fig. 5cii.

Pseudocode for the training and testing procedures is provided in Supplementary Algorithms 3 and 4.

For comparison, we also plot in Fig. 5ciii the classification results obtained with the same 2x2 architecture but using classical
predictive coding dynamics

τ u̇l = −ul +Wlrl+1 + r′
l ◦WT

l−1el−1 (15)

Ẇl ∝ elr
T
l+1 (16)

and following the same training and testing procedures.

In Fig. 5d we plot the associated performance, with the addition of the maximum likelihood estimate with perfect knowledge
of the means and variances.

Data availability

All data is generated by the simulation code (see Code availability statement below).

Code availability

Simulation code for this paper can be accessed at github.com/arnogranier/attention-pc.
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Supplementary Information

Supplementary Note 1 Energy

The density of a multivariate Gaussian with diagonal covariance Σ = diag(σ2) with σ2 > 0 is

f(u;µ,σ2) = (2π)−k/2det(Σ)−1/2 exp

(
−1

2
(u− µ)TΣ−1(u− µ)

)
(17)

= (2π)−k/2

(∏
i

λi

)1/2

exp

(
−1

2
∥e∥2λ

)
(18)

noting λ = 1/σ2 where the division is taken elementwise and ∥e∥2λ = ∥u− µ∥2Σ−1 = (u− µ)TΣ−1(u− µ).
For the determinant, remark that the determinant of diagonal matrix is the product of its diagonal elements.

We now derive the right-hand side equality in Eqn. 1

− log p(x, z|θ) = − log

(
K

n−1∏
l=0

p(ul|ul+1,θ)

)
(19)

= −
n−1∑
l=0

log p(ul|ul+1,θ) +K (20)

= −
n−1∑
l=0

log

(2π)−kl/2

(∏
i

(λl)i

)1/2

exp

(
−1

2
∥el∥2λl

)+K (21)

= −
n−1∑
l=0

log
(
(2π)−kl/2

)
− 1

2

n−1∑
l=0

log

(∏
i

(λl)i

)
+

1

2

n−1∑
l=0

∥el∥2λl
+K (22)

=
1

2

n−1∑
l=0

∥el∥2λl
− 1

2

n−1∑
l=0

| logλl|+K (23)

where to get Eqn. 19 we used Eqn. 6 and to get Eqn. 21 we used Eqs. 7 and 18.
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Supplementary Note 2 Partial derivatives of the energy

We now give a high-level view of the derivation of partial derivatives of the energy E used in neuronal and
synaptic dynamics Eqs. 2, 4 and 5. We omit calculation details for the sake of brevity. As a reminder,
we set el = ul −Wlϕ(ul+1), λl = Alϕ(ul+1), σ

2
l = 1/λl, δl = (σ2

l − e2l )/2 and ◦ is the componentwise
(Hadamard) product.

For this, we will make use of the following matrix calculus formulas:

∀M symmetric ,
∂xTMx

∂x
= 2Mx (i)

∂g(x)

∂x
=

∂g(f(x))

∂f(x)

∂f(x)

∂x
(chain rule) (ii)

∂1T log(Mx)

∂x
= 1T (diag(1/(Mx))M) = MT (1/(Mx)) (with the division being componentwise) (iii)

∂f(x)T g(x)

∂x
=

∂f(x)

∂x
g(x) +

∂g(x)

∂x
f(x) (iv)

∂f(x) ◦ g(x)
∂x

=
∂f(x)

∂x
diag(g(x)) +

∂g(x)

∂x
diag(f(x)) (v)

Latent variables

The derivative with respect to ul can be decomposed in three terms

2
∂E

∂ul
=

∂∥el∥2λl

∂ul
+

∂∥el−1∥2λl−1

∂ul
− ∂| logλl−1|

∂ul
(24)

We compute those three terms independently.

For the first term, the derivation is straightforward and follow directly from (i) and (ii)

∂∥el∥2λl

∂ul
= 2λl ◦ el (25)

For the second term we first remark that it can be written as
∂eT

l−1(λl−1◦el−1)

∂ul
, apply (iv) and then develop

∂λl−1◦el−1

∂ul
following (v)

∂∥el−1∥2λl−1

∂ul
= −2ϕ′(ul) ◦

(
W T

l−1(λl−1 ◦ el−1)−
1

2
AT

l−1e
2
l−1

)
(26)

For the third term remark that | logx| = 1T logx, then a straightforward application of (iii) is sufficient

∂| logλl−1|
∂ul

= ϕ′(ul) ◦AT
l−1σ

2
l−1 (27)

Finally putting it all together we have

∂E

∂ul
= λl ◦ el − ϕ′(ul) ◦

(
W T

l−1(λl−1 ◦ el−1) +AT
l−1δl−1

)
(28)
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Prediction weights

The derivative with respect to Wl is simply

2
∂E

∂Wl
=

∂∥el∥2λl

∂Wl
(29)

The derivation is straightforward and follow directly from (i) and (ii)

∂∥el∥2λl

∂Wl
=

∂eTl diag(λl)el
∂el

∂el
∂Wl

= −2(λl ◦ el)ϕ(ul+1)
T (30)

and
∂E

∂Wl
= −(λl ◦ el)ϕ(ul+1)

T (31)

Precision estimation weights

The derivative with respect to Wl can be decomposed in two terms

2
∂E

∂Al
=

∂∥el∥2λl

∂Al
− ∂| logλl|

∂Al
(32)

We compute those two terms independently. For these we find it easier to compute derivatives element by
element.

For the first term remark that ∥el∥2λl
=
∑

i

(
el

2
)
i

∑
j (Al)i,j (ϕ(ul+1))j and then it is simple to see that

∂∥el∥2λl

∂(Al)i,j
=
(
el

2
)
i
(ϕ(ul+1))j (33)

For the second term remark that | logλl| =
∑

i log(λl)i =
∑

i log
(∑

j(Al)i,j(ϕ(ul+1))j

)
∂| logλl|
∂(Al)i,j

=
(ϕ(ul+1))j∑

j(Al)i,j (ϕ(ul+1))j
=
(
σ2
l

)
i
(ϕ(ul+1))j (34)

Putting it together and writing it in matrix form

∂E

∂Al
= −δlϕ(ul+1)

T (35)
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Supplementary Note 3 Intuition at equilibrium in the linear case

At equilibrium of Eqn. 2, noting Λk = diag(λk), ignoring second-order errors (δl−1 = 0) and working in the
linear case ϕ(x) = x we have the value at equilibrium of Eqn. 2

u∗
l = (Λl +W T

l−1Λl−1Wl−1)
−1(ΛlWlul+1 +W T

l−1Λl−1ul−1) (36)

where the first term can be interpreted as a normalization factor and the second term as a weighted sum
of higher and lower representations “translated in the language” of the local level l through prediction
weight matrices. Remark that, if the precision λl−1 of the prediction that level l makes about level l − 1 is
negligible compared to the precision λl of the prediction that level l + 1 makes about level l, which we will
note λl−1/λl → 0, then the activity of level l goes to the prediction made by level l + 1 (the prior)

λl−1/λl → 0 =⇒ u∗
l →Wlul+1 (37)

Inversely, when the prediction that level l+ 1 makes about what the activity in level l should be (the prior)
is deemed unreliable compared to the prediction that level l makes about what the activity of level l − 1
should be, then the activity of level l goes to a value such that its prediction is the activity in level l − 1

λl/λl−1 → 0 =⇒ Wl−1u
∗
l → ul−1 (38)
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Supplementary Algorithm 1 Precision learning

Require: T , Nl+1 Nl, Nc, η, overlap, p
σ2 = [1.5 rand(Nl) + 0.5 for in 1:Nc] ▷ σ2 initialization, random uniform between 1/2 and 2
µ = [2 rand(Nl)− 1 for in 1:Nc] ▷ µ initialization, random uniform between −1 and 1
if overlap then

r = [rand(Nl+1) < p for in 1:Nc] ▷ r initialization, random binary vector with p% ones on average
A = ones(Nl, Nl+1)/(pNl+1) ▷ A initialization (such that the mean starting λ is one)

else
r = [[(j==i) ? 1 : 0 for j in 1:Nl+1] for i in 1:Nc] ▷ r initialization, onehot encoded
A = ones(Nl, Nl+1) ▷ A initialization (such that the mean starting λ is one)

end if
store = []
for t in 1:T do

for i in 1:Nc do
x ∼ N (µ[i], σ2[i]) ▷ sample lower level data
λ = Ar[i] ▷ Compute precision estimate
δ = 0.5(1/λ− (x− µ[i])2) ▷ compute second-order errors
A← A+ ηA ◦ δr[i]T ▷ update A following Eqn. 5

end for
store[t] = sum(norm([σ2[i] - 1/Ar[i] for i in 1:Nc]))/(

√
NlNc) ▷ distance between (real) σ2 and 1/λ

end for
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Supplementary Algorithm 2 Approximate Bayes-optimal integration

Require: Nl+1, Nl, Nc ϕ, τ , T, Ne

σ2 = [choice([0.1, 2]) for in 1 : Nl] for in 1:Nc] ▷ Initialize prior variance
µ = [2rand(Nl)/Nl for in 1:Nc] ▷ Initialize prior mean
A = 2rand(Nl, Nl+1) ▷ Initialize precision estimation weights
σ̄ = sum(σ2)/Nc ▷ mean prior variance
λ̄ = sum([Aµ[i] for i in 1 : Nc])/Nc ▷ mean data precision
err1s, err2s, err3s, err4s = [ ], [ ], [ ], [ ]
for t in 1:Ne do

for i in 1 Nc do
x ∼ N (µ[i],σ2[i]) ▷ sample true data
λ = Aϕ(x) ▷ compute precision estimate at true data
d ∼ N (x, 1/λ) ▷ sample noisy data
x̂ = (λ ◦ d+ σ−2[i] ◦ µ[i])/(λ+ σ−2[i]) ▷ Bayes-optimal estimate
err1s.append(norm(x− x̂)/

√
Nl)

u = 1
for t in 1:T do

u += (1/τ) ∗ (−u+ µ[i] + σ2[i] ◦Aϕ(u) ◦ (d− u)) ▷ dynamics with precision estimation
end for
err2s.append(norm(x− u)/

√
Nl)

u = 1
for t in 1:T do

u += (1/τ) ∗ (−u+µ[i]+ σ̄ ◦ λ̄ ◦ (d−u)) ▷ dynamics with average precision and prior variance
end for
err3s.append(norm(x− u)/

√
Nl)

u = 1
for t in 1:T do

u += (1/τ) ∗ (−u+ µ[i] + (d− u)) ▷ no weighting
end for
err4s.append(norm(x− u)/

√
Nl)

end for
end for
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Supplementary Algorithm 3 Training

Require: dataset, W , A, ϕ, ηw, ηa
Ensure: terms of A are strictly positive, range of ϕ is positive
for (d, t) in dataset do ▷ (d, t) is ( [x,y] data, one-hot target)

λ = Aϕ(t) ▷ precision estimate
e = d−Wϕ(t) ▷ raw error
δ = 0.5(1/λ− e2) ▷ second-order error
W ←W + ηw(λ ◦ e)tT ▷ prediction weight learning, Eqn. 4
A← A+ ηaA ◦ δtT ▷ precision estimation weight learning, Eqn. 5

end for
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Supplementary Algorithm 4 Testing

Require: data, W , A, ϕ, ϕ′ τ , T
inferred labels = dict()
t = [0.5, 0.5] ▷ Uniform initialization of top level
for d in data do

for i = 1..T do
λ = Aϕ(t) ▷ precision estimate
e = d−Wϕ(t) ▷ raw error
δ = 0.5(1/λ− e2) ▷ second-order error
a = ϕ′(t) ◦ (W T (λ ◦ e) +AT δ) ▷ Total propagated error Eqn. 3
t← t+ τ−1(−t+ a) ▷ Neuronal dynamics Eqn. 2 without top down influence

end for
inferred labels[d] = argmax(t) ▷ Most probable class index

end for
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