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Abstract
Minimization of cortical prediction errors has been considered a key computational goal of the cerebral cortex underlying perception, 
action, and learning. However, it is still unclear how the cortex should form and use information about uncertainty in this process. 
Here, we formally derive neural dynamics that minimize prediction errors under the assumption that cortical areas must not only 
predict the activity in other areas and sensory streams but also jointly project their confidence (inverse expected uncertainty) in their 
predictions. In the resulting neuronal dynamics, the integration of bottom-up and top-down cortical streams is dynamically 
modulated based on confidence in accordance with the Bayesian principle. Moreover, the theory predicts the existence of cortical 
second-order errors, comparing confidence and actual performance. These errors are propagated through the cortical hierarchy 
alongside classical prediction errors and are used to learn the weights of synapses responsible for formulating confidence. We 
propose a detailed mapping of the theory to cortical circuitry, discuss entailed functional interpretations, and provide potential 
directions for experimental work.
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Introduction
Taking uncertainty into account in models of cortical processing 
has proven beneficial to capture behavioral and neural data at 
multiple scales (1–3). Empirical studies on humans and other 
animals show that prior knowledge and data from multiple mo-
dalities are weighted by their relative uncertainty during percep-
tual integration (4, 5), decision-making (6, 7), and sensorimotor 
control (8, 9). Crucially, uncertainty is context-dependent and 
can vary dynamically (10, 11). For example, in the dark, animals 
should rely more on prior knowledge of the environment than vi-
sion, whereas in daylight, they can trust their vision more.

Additionally, cortical processing has been described based on 
the notion of prediction (12, 13), with cortical areas attempting 
to predict the activity in other areas or sensory streams. The com-
putational goal of the cortex would then be to minimize differen-
ces between these predictions and actual activity, commonly 
referred to as prediction errors. Neural computations realizing 
this goal have been proposed as canonical cortical computations 
(14–16). One way to incorporate uncertainty in these models is 

to assume that a cortical prediction should not simply be a single 

potential representation of the target area but rather a distribu-

tion over the space of possible representations. In that case, nor-

mative theories based on variants of maximum-likelihood 

estimation suggest that cortical prediction errors should be multi-

plicatively weighted by the inverse variance of the predictive dis-

tribution. This modulatory weighting of prediction errors has 

gained a central place in the branch of cognitive sciences based 

on predictive coding (17, 18), most notably in models of attention 

(19–21), and in neuropsychiatry (22–25). Potential neural imple-

mentations have been discussed, notably in cortico-pulvinar 

loops including populations of neurons encoding beliefs about un-

certainty (17, 26) (also see ref. (27) for a purely cortical implemen-
tation), or more generally through neuromodulation (28, 29). 

However, a formal account of the role of learned and context- 

dependent uncertainty estimation is still missing.
In this work, we suppose that cortical areas must not only pre-

dict the activity in other areas and sensory streams but also jointly 
estimate the confidence of their predictions, where we define 

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/9/pgae404/7756710 by U

niversity of Bern user on 28 O
ctober 2024

https://orcid.org/0009-0002-9259-1831
https://orcid.org/0000-0003-2632-0427
https://orcid.org/0000-0003-4948-1864
mailto:arno.granier@unibe.ch
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/pnasnexus/pgae404


confidence as the (estimated) inverse expected uncertainty of the 
prediction. In other words, we introduce measures of confidence 
computed at each level of the cortical hierarchy as a function of 
current higher-level representations, forming a hierarchy of confi-
dence analogous to the hierarchy of predictions. For example, the 
representation of the environment will determine the degree of 
confidence in a prediction about the presence of a particular object 
(e.g. this confidence will be different in familiar versus unfamiliar 
environments). Similarly, the representation of an object will de-
termine the degree of confidence in predictions of lower-level fea-
tures of that object (e.g. some objects are always of the same color 
while others can vary). This formulation is in line with rare instan-
ces where inverse uncertainty has been formulated as a function 
of current neuronal activity (19, 26), and to be contrasted with 
the majority of literature in which it is predominantly defined as 
a parameter of the internal model, independent of current neur-
onal activity. With our formulation, confidence has a fast, dynam-
ic, and context-dependent influence on neural dynamics, while 
the parameters of the function computing confidence, encoded 
in synaptic weights, slowly learn the statistics of the environment. 
Our definition of confidence differs from the everyday use of the 
term reflecting metacognitive or subjective feelings of confidence. 
However, subjective confidence might emerge from probabilistic 
neural representations like the one we consider in this work (30). 
Moreover, it is interesting to note that experiments at the behav-
ioral level recently confirmed that the brain forms estimates of 
metacognitive confidence based on prior knowledge (31).

Results
An energy for cortical function
Given the organization of the cortex into specialized areas, we de-
fine latent cortical representations as u1, . . . , un, corresponding to 
the membrane potentials of neuronal populations in n areas, and 
denote u0 the observation. For example, the observation u0 might 
be the activity of visual sensors (retina), and latent cortical repre-
sentations u1, . . . , un might encode local orientation (V1), color 
(V4), objects (IT), etc.

As a simplifying assumption, we organize areas in a strict gen-
erative hierarchy, such that area ℓ + 1 tries to predict the activity 
of only the area  below (see Fig. 1a).  It does so by sending its output 
rates rℓ+1 = ϕ(uℓ+1) through top-down synapses with plastic 
weights Wℓ, where ϕ represents the neuronal activation function. 
Additionally, area ℓ + ℓ similarly estimates and conveys to area 
the confidence of its prediction through top-down synapses with 
plastic weights Aℓ. We further hypothesize that the resulting 
predictive distribution is the (entropy-maximizing) normal distri-
bution with mean vector μℓ = Wℓrℓ+1 and confidence (inverse vari-
ance) vector πℓ = Aℓrℓ+1 (see Fig. 1b). Crucially, confidence is not 
simply a static parameter of the model; instead, it is a parameter-
ized function of current higher-level representations. For ex-
ample, different context representations might lead to different 
levels of certainty about the presence of the same object, and dif-
ferent object representations might send more confident predic-
tions for one sensory modality than another. In essence, this is 
an extension of the notion of prediction, where cortical areas pre-
dict the confidence (second-order information) in addition to the 
mean (first-order information).

We can now formulate our energy (or cost) for cortical function

E =
1
2

n−1

ℓ=0

‖eℓ‖2πℓ −
1
2

n−1

ℓ=0

log |πℓ|, (1) 

where eℓ = uℓ − μℓ is a prediction error, ‖ · ‖πℓ denotes the 

norm with πℓ as a metric (i.e. a variance-normalized norm, 

‖eℓ‖2πℓ = eT
ℓdiag(πℓ)eℓ) and | · | denotes the product of components. 

This energy can be derived as the negative log-joint of a hier-
archical generative probabilistic model (see Materials and 
methods). Note that ‖eℓ‖πℓ is the classical Euclidean norm of 

standardized errors. In other words, here, we measure distan-
ces in terms of numbers of standard deviations away from the 
mean. This metric, the Mahalonobis distance, is a better meas-
ure of distance between a point (representation) and a Gaussian 
distribution (prediction) than simply the Euclidean distance to 
the mean ‖eℓ‖.

This energy E seems worth minimizing. The first term is a 
measure of distance between actual representations and predic-
tions, additionally taking into account the confidence of predic-
tions: the more a prediction is confident, the more a deviation 
from it matters. The second term indicates that high confidence 
is preferable. In other words, the cortex tries to reduce its expected 
uncertainty. That is, as long as high confidence does not exces-
sively lead to an increase in the first term: there must be a balance 
between the confidence and the (average) magnitude of prediction 
errors (defined as the squared unsigned prediction errors). In oth-
er words, areas learn to be confident in predictions leading to 
small remaining errors (e2

ℓ−1). Moreover, the second term also 
acts as a regularizer to avoid uninformative, i.e. very small, 
confidence.

Having formulated an energy for cortical function, we formally 
derive gradient-based neuronal dynamics and synaptic learning 
rules minimizing this energy.

Neuronal dynamics with confidence estimation
We classically derive neuronal dynamics of inference minimizing 
the energy E through gradient descent. Moreover, we make use of 
confidence πℓ as a metric to guide our descent (32). The resulting 
dynamics can be interpreted as an approximate second-order op-
timization scheme (see Materials and methods). This leads to the 
leaky neuronal dynamics

τu̇ℓ = −π−1
ℓ ◦ ∂E/∂uℓ = −uℓ + μℓ + π−1

ℓ ◦ aℓ, (2) 

a b

Fig. 1. Predictive distributions in the cortical hierarchy. a) Probabilistic 
model. Latent representations (uℓ) are organized in a strict generative 
hierarchy. b) Predictions are Gaussian distributions. Both the mean 
(μℓ = Wℓrℓ+1, first-order) and the confidence (πℓ = Aℓrℓ+1, inverse variance, 
second-order) are functions of higher-level activity.
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integrating top-down predictions μℓ = Wℓrℓ+1, and total propa-
gated errors

aℓ = r′ℓ ◦ (WT
ℓ−1(πℓ−1 ◦ eℓ−1) + AT

ℓ−1δℓ−1) (3) 

defined as the sum of confidence-weighted prediction errors πℓ−1 ◦

eℓ−1 and second-order errors δℓ−1 = (π−1
ℓ−1 − e2

ℓ−1)/2, both propagated 
upwards from the lower area. Here ◦ is the componentwise 

(Hadamard) product and e2
ℓ−1 = eℓ−1 ◦ eℓ−1. The dynamics entailed 

by Eqs. 2 and 3 are illustrated in Fig. 2. The second-order errors 
δℓ are not errors on the prediction (of the mean) μℓ but errors on 
the confidence πℓ, which are expected to be on average 0 if and 
only if the estimate πℓ correctly captures the underlying inverse 
variance. Following previous work (33), we suppose that total 
propagated errors aℓ are encoded in the apical dendrites of cortical 
neurons with somatic membrane potential uℓ.

These neuronal dynamics (Eqs. 2 and 3) entail two major points 
of interest, one of gain modulation of errors based on confidence 
(see Fig. 3) and one of second-order error propagation (see 
Fig. 4). Mechanisms of gain modulation can further be subdivided 
into a divisive modulation by prior confidence πℓ, and a multiplica-
tive modulation by data confidence πℓ−1. In the following section, 
we complete our theoretical framework by deriving synaptic 
learning rules for parameters Wℓ and Aℓ. We then return to neur-
onal dynamics and further unpack these two points of interest.

Error-correcting synaptic learning of confidence
At the equilibrium of neuronal dynamics, weights of synapses car-
rying predictions can be learned following the gradient

Ẇℓ ∝ −∂E/∂Wℓ = (πℓ ◦ eℓ)rT
ℓ+1, (4) 

where πℓ ◦ eℓ are postsynaptic confidence-weighted prediction er-
rors and rℓ+1 are presynaptic rates. This is the classical learning 
rule for prediction weights in the predictive coding framework 
(14). By following this learning rule, synapses learn to correctly 
predict lower-level features (e.g. orientation) from higher-level ac-
tivity (e.g. object). Additionally, confidence impacts learning 
speed: if a prediction is confident but wrong, a significant update 
is required, whereas an error on a prediction made with low con-
fidence might reflect intrinsic variability and does not require a big 
update.

Similarly, weights Aℓ of synapses carrying confidence can also 
be learned following the gradient

Ȧℓ ∝ −∂E/∂Aℓ = δℓrT
ℓ+1, (5) 

where again δℓ = (π−1
ℓ − e2

ℓ )/2 are postsynaptic second-order errors. 
By following this learning rule, synapses learn to correctly esti-
mate the confidence of the associated prediction, which we use 
as a context-specific metric. Since πℓ = Aℓrℓ+1 approximates an in-
verse variance and enters as a metric in Eqs. 1 and 2, it should re-
main positive. An important extension of Eq. 5 is then to include a 
mechanism to ensure that components of Aℓ remain positive (see 
Materials and methods).

These two similar learning rules state that synaptic weights 
evolve to minimize errors remaining after inference. We verify 
in simulations that Eqs. 4 and 5 (with an additional mechanism 
to ensure positivity, see Materials and methods) can indeed learn 
correct mean and confidence of different context-dependent data 
distributions as functions of higher-level representations (see 
Supplementary Material, SI5). Importantly, all the information 
needed for learning, namely the presynaptic rate and postsynap-
tic error, is readily available in the vicinity of the synapse.

Having developed a way to learn how to estimate top-down 
confidence, we will now further examine how this is used in neur-
onal dynamics.

Dynamic balancing of cortical streams based on 
confidence
In our neuronal dynamics (Eqs. 2 and 3), the relative importance 
given to top-down predictions and bottom-up prediction errors 
is controlled by two mechanisms that both modulate the gain of 
prediction errors. First, the confidence of top-down predictions 
of a neuron’s activity (“prior confidence”) divisively impacts the 
importance of bottom-up errors in the inference dynamics of 
this neuron (see Fig. 3a). For example, neurons encoding context 
might send more or less confident predictions to neurons encod-
ing the presence of particular objects. Then, the relative import-
ance of the prior prediction compared to bottom-up errors is 
greater in contexts sending more confident prior predictions (“In 
a forest, I know there are trees”) than less confident ones (“In 
this city neighbourhood, there might be trees, let’s see”).

Second, the confidence of predictions a neuron makes about 
lower-level activities (“data confidence”) multiplicatively impacts 
the importance of errors entailed by these predictions (see Fig. 3b). 
For example, neurons encoding object identity might send predic-
tions to different sensory modalities with different confidence lev-
els, reflecting different levels of reliability or noise in different 
lower-level streams. Prediction errors arising from more reliable 
streams should be weighted more strongly (“Across trees, struc-
ture (trunk, branches, leaves, etc.) is usually more consistent 
than color. To recognize a tree, I should then trust structure 
more than color”).

This weighting is proportional to the more classical 
Bayes-optimal weighting of top-down prediction (akin to prior) 
and bottom-up errors (akin to data) by their respective reliabil-
ities, and leads to a Bayes-optimal estimate of latent variables at 
equilibrium of neuronal dynamics. Computationally, this mech-
anism proves valuable when integrating information from sour-
ces with different levels of reliability (or noise), for example, 
when integrating prior and data or during multimodal integration 
(see Supplementary Material, Fig. S4 and SI6).

At the level of a cortical area, confidence controls the balance of 
bottom-up and top-down information on a neuron-by-neuron ba-
sis, providing fine-grained control over what is attended to. It is 
worth highlighting that, with our formulation of confidence as a 
function of higher-level representations, we can encompass 
state-, context-, task-, or feature-dependent confidence signals, 
depending on what the higher-level representations encode. 
Moreover, as higher-level representations change, so do confi-
dence signals, providing a mechanism to explain the trial-to-trial 
variability of confidence weighting observed in animals (10) (see 
Fig. S4).

Second-order error propagation
In the proposed neuronal dynamics (Eqs. 2 and 3), second-order 
errors δℓ are propagated through the cortical hierarchy alongside 
confidence-weighted prediction errors πℓ ◦ eℓ (see Fig. 4a). This en-
tails a second-order cortical stream along which areas exchange 
confidence and second-order errors. Importantly, this means 
that the second-order errors change higher-level representations 
(see Fig. S4).

To investigate the computational role of second-order error 
propagation and their influence on higher-level representations, 
we place a single area (a network without hidden layers, see 
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a b

Fig. 2. Neuronal dynamics of inference. a) A high-level schematic depiction of neuronal dynamics (Eqs. 2 and 3). Prediction errors [eℓ] are first computed 
by comparing predictions [μℓ = Wℓrℓ+1] with actual activity or data [uℓ]. Prediction errors are weighted multiplicatively by the estimated confidence 
(inverse expected variance) of the prediction [πℓ = Aℓrℓ+1]. The second-order errors [δℓ] are computed by comparing inverse confidence estimates [π−1

ℓ ] and 
squared prediction errors [e2

ℓ ]. The second-order errors are up-propagated and integrated alongside up-propagated prediction errors into the total error 
[aℓ]. The total error is divisively modulated by the prior confidence [πℓ] b) A more detailed illustration centred on dynamics for representations at a single 
level ℓ. Prediction errors and second-order errors are then those of level ℓ − 1.

a b

Fig. 3. Adaptive balancing of cortical streams based on confidence. a) Divisive modulation of errors by the confidence of top-down predictions about what 
the activity of a neuron should be (prior confidence, π−1

ℓ ). b) Multiplicative modulation of errors by the confidence of predictions that a neuron makes 
about what the activity of other neurons should be (data confidence, πℓ−1).
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Fig. 4b) in supervised learning settings on simple nonlinear binary 
classification tasks (see Fig 4di and Materials and methods). 
Parameters are learned following Eqs. 4 and 5. As expected, the 
confidence signal after learning represents the class-specific in-
verse variance (see Fig. S1). With our dynamics (see Fig. 4dii), 
but not with classical predictive coding dynamics (see Fig. 4diii), 
a single area can solve these nonlinear classification tasks (see 
Fig. 4e).

At a computational level, this qualitative difference in perform-
ance (classification accuracy) can be understood by looking at the 
energy we minimize. With our model, we choose the latent re-
presentation which sends a predictive distribution with the high-
est likelihood with respect to current data (see Fig. 4c). In contrast, 
classical predictive coding chooses the latent representation that 
minimizes the Euclidean distance between the input and the en-
tailed point prediction. At an algorithmic level, the capacity of 
our network to solve these tasks comes from the influence of 
second-order errors on the higher-level representation. To minim-
ize second-order errors, the network must not only choose the 
class whose point (mean) prediction is closest to the data point 
(that is, first-order prediction error minimization). This is nonin-
formative in the example in Fig. 4 because both class distributions 
have the same mean. The network also has to choose the class 
that best predicts the remaining distance (e2

ℓ ) between point pre-
diction and data.

Confidence estimation in cortical circuits
We next describe how our dynamics could be realized in cortical 
circuits (see Fig. 5; for an illustration of the entire cortical ensem-
ble, see Fig. S3). We postulate that latent variables uℓ are encoded 
in the somatic activity of a population of intracortical pyramidal 
cells of layer 6 (L6p). As demanded by our theoretical framework, 
these neurons receive the majority of their input from intracorti-
cal long-range projections (34) and send top-down projections to 
lower cortical areas (35, 36). We propose that these projections 
carry not only predictions (37–39), but also confidence. Following 
experimental evidence of error or mismatch encoding in pyram-
idal cells of cortical layer 2/3 (40, 41), we propose that confidence- 
weighted prediction errors πℓ ◦ eℓ and second-order errors δℓ are 
computed by two populations of pyramidal neurons situated in 

layer 3, respectively L3e and L3δ. As our theory demands, these 
neurons send feedforward projections to higher cortical areas 
(35, 36). Additionally, our theory suggests that both types of error 

a b di e

dii

diii
c

Fig. 4. Propagation of second-order errors for classification. a) The second-order errors compare confidence and performance (with performance defined 
as a function of the magnitude of prediction errors). b) A 2 × 2 network for binary classification. During learning, the X and Y data are sampled from one of 
the two class distributions, and the activity of neurons representing the class is clamped to the one-hot encoded correct class. Parameters (W, A) are then 
learned following Eqs. 4 and 5. During inference, the activity of neurons representing the class follows neuronal dynamics (without top-down influence), 
and we read the selected class as the one corresponding to the most active neuron. Prediction error (first-order) propagation is omitted in the depiction. c) 
Maximizing the likelihood of predictions leads to nonlinear classification in a single area. di) Two different 2-dimensional binary classification tasks. The 
ellipse represents the true class distributions for the two classes. dii) Classification with second-order error propagation. diii) Classification without 
second-order error propagation. e) Classification accuracy on the task presented in d, second column.

a b

c

Fig. 5. Cortical circuit for neuronal dynamics of inference (as described in 
Eq. 2 and Eq. 3). a) Representations (uℓ) are held in the somatic membrane 
potential of L6p. Top-down synapses carrying predictions (μℓ = Wℓrℓ+1) 
directly excite L6p at proximal dendrites. Bottom-up 
confidence-weighted prediction errors (WT

ℓ−1(πℓ−1 ◦ eℓ−1)) and 
second-order errors (AT

ℓ−1δℓ−1) are integrated into total error (aℓ) in the 
distal dendrites of L6p as described in Eq. 3. This total error is then 
weighted by the prior uncertainty (π−1

ℓ ) through divisive dendritic 
inhibition realized by deep SST-expressing interneurons. b) Top-down 
predictions (μℓ = Wℓrℓ+1) and local representations (uℓ) are compared in 
L3e. Confidence weighting is then realized through gain modulation of L3e 
by the disinhibitory VIP-expressing and SST-expressing interneurons 
circuit. c) L3δ compares top-down confidence and local squared 
prediction errors encoded in basket cells (BC) into re-weighted 
second-order errors.
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are integrated into the total propagated errors aℓ (as defined in Eq. 
3). We propose that this integration takes place in distal apical 
dendrites of L6p situated at the height of layer 4/5a (42), in line 
with previous work postulating error encoding in segregated den-
dritic compartments (33).

We now concern ourselves with the balancing of cortical 
streams through inhibition and disinhibition of errors entailed 
by our theory. We propose that prediction errors are computed 
in L3e by comparing local and top-down inputs from L6p. 
The weighting of bottom-up prediction errors by (data-) confi-
dence might be realized through top-down gain modulation 
targeting L3e. This could be achieved through a well-known disin-
hibitory circuit motif involving Vasoactive intestinal peptide 
(VIP)-expressing interneurons receiving top-down input and pref-
erentially inhibiting Somatostatin (SST)-expressing interneurons 
which in turn preferentially inhibit dendrites of L3e (43–45) (see 
Fig. 5b). This would entail VIPs encoding a confidence signal and 
superficial SSTs an expected uncertainty signal. This hypothesis 
is corroborated by recent 2-photon imaging on rodents placed in 
an oddball paradigm, where activity ramps up in VIPs and decays 
in superficial SSTs as a stimulus is repeated (46). Moreover, our 
theory suggests that total bottom-up errors should be modulated 
by the (prior-) uncertainty of top-down predictions (the factor π−1

ℓ

in Eq. 2). In other words, at a circuit level, the confidence in prior, 
top-down information controls the integration of bottom-up er-
rors by modulating the gain of somatic integration of apical activ-
ity. We propose that this is realized through modulation of L6p 
apical dendrites by deep (non-Martinotti) SST interneurons, 
which would then encode a confidence signal (see Fig. 5a). The 
laminar specificity of SST activity (47) and targets (48) supports 
this hypothesis.

Finally, we suggest circuit-level mechanisms underlying 
second-order error computation in L3δ (see Fig. 5c). We caution 
here that the schematic of Fig. 5c should not be taken too literally 
as circuit mechanisms, and rather illustrates the key concept that 
to compute second-order errors, confidence must be compared to 
the magnitude of current prediction errors. We propose that the 
magnitude of prediction errors is computed in Parvalbumin 
(PV)-expressing basket cells from local L3e inputs. At a circuit lev-
el, L3e is thought to be separated into two populations encoding 
the positive and negative part of prediction errors, respectively 
(41). If this holds, then excitatory projections from both these pop-
ulations to local basket cells, eventually followed by a nonlinear 
integration by basket cells (49), would be sufficient to perform 
the needed computation of local error magnitude (50). L3δ would 
then compute second-order errors by comparing top-down confi-
dence and local (subtractive) inputs from basket cells. 
PV-expressing basket cells have indeed been shown to preferen-
tially inhibit specific pyramidal cell types (51, 52). The here pre-
sented propositions can serve as a starting point for 
experimental investigation of cortical second-order errors.

The presented mapping to cortical circuits allows us to make 
the following experimental predictions, beyond those made by 
more classical predictive coding models: 

1. Feedback connections originating from deep layer pyram-
idal cells (in our case, L6p) carry predictions or confidence 
estimates depending on the postsynaptic target cell type. 
In other words, both predictions and confidence estimates 
are functions of the activity of higher-level deep pyramidal 
cells.

2. Neural signatures of confidence estimates can be found in 
VIP and SOM interneurons. The activity of these 

interneurons should notably be controlled by higher-level 
representations.

3. The activity of supragranular and infragranular SOM inter-
neurons inversely covary.

4. The strength of apical modulation, particularly targeting the 
apical integration zone, is proportional to the top-down ex-
pected uncertainty.

5. Basket cells encode the magnitude of local prediction errors, 
potentially by integrating the activity of positive and nega-
tive prediction error neurons.

6. One class of layer 2/3 pyramidal cells encodes second-order 
errors, comparing top-down confidence and actual predict-
ive performance. Recent evidence suggests that L3e ex-
presses Adamts2 and Rrad (53), while no functional role has 
yet been proposed for the third class of superficial pyramidal 
cells expressing Agmat, which we propose could be L3δ.

7. Layer 2/3 pyramidal cells encoding errors project feed-
forward in the cortical hierarchy. This allows us to putative-
ly more precisely situate them in deeper layer 3 (35, 36). 
These feedforward projections target the apical dendrites 
of deep pyramidal cells in the upper area, situated in layer 
4/5a (considering layer 6 pyramidal cells).

8. Data confidence weighting. In an experiment where a 
contextual cue indicates which of two sensory modalities 
(e.g. vision and touch) is relevant to form a decision, we ex-
pect prediction error responses to be of greater magnitude 
for the relevant modality (see Supplementary Material, 
Fig. S4a–e).

9. Prior confidence weighting. In an experiment where a con-
textual cue indicates directly which decision is correct and 
that sensory input should be ignored for this trial, we expect 
a strong inhibition of the apical integration zone of pyram-
idal cells encoding the decision variable, suppressing the in-
tegration of bottom-up sensory errors (see Supplementary 
Material, Fig. S4a,b,f,g).

10. Second-order errors. In an experiment where the subject has 
to infer context based on the variability of sensory inputs ra-
ther than on the mean value (e.g. Context 1: [38,40,42]◦; 
Context 2: [10,40,70]◦), then we expect second-order errors 
to occur and drive inference (see Supplementary Material, 
Fig. S4h,i).

Discussion
In this work, we derived predictive coding dynamics with adap-
tive, context-dependent, and learned confidence information. 
Specifically, we considered diagonal estimates of the inverse co-
variance matrix (with diagonal πℓ). In that case, each input dimen-
sion is scaled by the corresponding standard deviation when 
computing distances. However, the brain’s utilization of (inverse) 
variance estimates is likely to encompass various forms beyond 
the diagonal estimates explored in our study. Scalar estimates 
would define the importance granted to all errors in an area. In 
that case, confidence weighting of errors might be realized 
through nonspecific release of neuromodulators (28, 29), scaling 
all feature dimensions equally. A prime example of this could be 
found in the estimation of environmental variability and its use 
in perceptual decision-making (29). Taking this reduction to the 
extreme, the brain might make use of a single, global scalar con-
fidence estimate. On the other end of the spectrum, we might con-
sider full inverse covariance matrices. We would then consider 
not only stretch but also skew in our metric. Doing so might 
lead to a theoretically grounded account of lateral connections 
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between prediction error nodes (15), with links to the notion of 
statistical whitening (the matrix square root of the full inverse co-
variance matrix is the ZCA whitening matrix). In general, we em-
phasize that considering the variance of predictive distributions 
as the backbone for normative theories of cortical modulation 
seems to us a promising endeavor.

Moreover, we treated predictions (mean estimates) as arising in 
a top-down manner, supposing that the cortex performs inference 
and learning on a purely generative model of its inputs. 
Considering bottom-up instead of top-down predictions is math-
ematically straightforward, could potentially align better with 
models considering top-down cortical pathways as modulating 
activity in a feedforward feature detection stream (54, 55), and 
could facilitate more direct testing on discriminative machine 
learning benchmarks. At the level of cortical circuitry, one might 
consider forward-projecting layer 5a and backward-projecting 
layer 2/3a pyramidal cells as sending bottom-up predictions and 
the entailed top-down prediction errors, respectively. This would 
form a fundamentally discriminative cortical pathway, a sort of 
dual of the generative pathway considered in this work.

It is important to acknowledge that the dynamics that we pre-
sented in this work share some classical limitations of predictive 
coding dynamics concerning biological plausibility e.g. weight 
transport (56), long inference (57), encoding of signed errors (33, 
41), one-to-one connections, weak criteria of locality for learning 
and the assumption of a strict hierarchy of latent variables (58). 
Notably, our proposed circuitry necessitates that each L3e is 
paired with exactly two interneurons, and each L6p with one 
interneuron and one L3e, and that these are connected through 
one-to-one connections. This poses a limitation to the biological 
plausibility of the model, and future work might consider exten-
sions relaxing those constraints developed in related literature 
(33, 59). Moreover, relaxing the simplifying hypothesis of a strict 
hierarchy of areas towards a model where “feedback” connections 
from different cortical areas participate in the confidence esti-
mate in a single target area would help capture confidence esti-
mates taking into account both sensory and decision confidence 
(7, 30, 60). Finally, a limitation at the circuit level is that second- 
order errors would need to be communicated to top-down synap-
ses targeting VIP and infragranular SST interneurons to realize the 
learning rule Eq. 5.

In our model, confidence multiplicatively modulates errors and 
is computed at each level of the hierarchy as a function of current 
representations. This dynamic gain modulation is reminiscent of 
the attentional mechanism in transformer networks (61). Our for-
mulation offers a first step towards a bridge between models of at-
tention in terms of neural gain modulation based on confidence 
(19–21) and attentional mechanisms in machine learning. 
Anecdotally, VIP-expressing interneurons, encoding confidence 
in our model, were described by experimentalists as “generating 
a spotlight of attention” (62). Furthermore, the computational 
interest of dynamic top-down gain modulation might also be 
sought through the lens of efficient and parsimonious coding 
(63). This perspective may already be implicitly embedded within 
our framework, given the connection between maximum likeli-
hood and the infomax principle (64).

A possible interpretation of the quantity encoded in second- 
order errors is as a form of “unexpected” uncertainty, as the differ-
ence between confidence estimates (“expected” uncertainty) and 
actual deviation from predictions. In that sense, second-order er-
rors might be considered signatures of surprise, if we define sur-
prise as unexpected predictive power (either better or worse 
than expected). In general, there is a tension between confidence- 

weighting and surprise-weighting in models of cortical computa-
tion, as encapsulated in the “perceptual prediction paradox” (65). 
Our model speaks to the resolution of this paradox also proposed 
in ref. (65): instantaneous and continuously computed confidence 
estimates initially bias perception (at level ℓ), while second-order 
propagation (to level ℓ + 1) informs and refines inference subse-
quently, highlighting “surprising” events.

Confidence weighting of prediction errors occurs as a central 
element in leading models of psychopathologies under the pre-
dictive processing framework (22–25). These models are often 
based on the idea of a pathological (over- or under-) weighting of 
either prior or data in a process of Bayesian integration. In our 
model, these two hypotheses involve distinct neural mechanisms, 
that is, modulation, respectively, of L6p apical dendrites and L3p. 
This distinction might prove critical to extending these models to 
the whole cortical hierarchy, where activity at one level both rep-
resents data for the level above and generates priors for the level 
below. Moreover, our proposed computational roles for inter-
neuron circuitry might help link accounts of neuropsychiatric dis-
orders in terms of confidence weighting of errors to accounts in 
terms of cortical excitation–inhibition balance (66) and inter-
neuron dysfunction (67).

On a similar note, a large body of experimental literature has 
focused on disentangling the neural signatures of expectation, 
prediction, and attention, often interacting in complex ways 
(e.g. (11, 68–71)). In this work, we introduce a formal distinction 
between prediction as the mean of a predictive distribution, and 
attention as the (inverse) variance of the same predictive 
distribution (equivalently: attention as a metric on the error 
landscape). This distinction entails different circuit mechanisms 
underlying prediction (L6p→L6p, L6p→L3e) and attention 
(L6p→VIP→L23-SOM→L3e disinhibition, L56-SOM→L6p apical 
dendrite inhibition). We hope that this formal distinction will 
help disentangle prediction and attention both in modeling and 
in more precise experiments targeting specific cell-types or 
subcircuits.

It has previously been suggested that prediction error re-
sponses of layer 2/3 cells should be modulated by the expected un-
certainty of the predicted feature (72). Our derivation suggests 
that the same prediction errors should in addition be weighted 
by the expected uncertainty of the feature generating the predic-
tion. Accordingly, we propose the terminology of doubly 
uncertainty-modulated prediction errors.

Finally, the suggested implementation in the circuitry of cortical 
pyramidal cells and interneurons definitely requires further refine-
ment through experimental work. Nevertheless, we provide a rigor-
ous theoretical framework to interpret existing experimental 
results and formulate ideas for experimental testing. Beyond pro-
viding a specific set of predictions, we aim to convey a novel norma-
tive perspective which indicates that searching for signatures of 
confidence estimation and second-order errors in cortical circuits 
might be an interesting venture, especially in interneuron activity.

Materials and methods
Probabilistic model
Here we elaborate on the form of the probabilistic model. 
We introduce a notion of strict hierarchy between levels of 
latent representations by supposing that the joint can be 
decomposed as

p(u0, u1, . . . , un) ∝ p(u0 |u1)p(u1 |u2) . . . p(un−1 |un), (6) 
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which can be justified by assuming a Markov proper-
ty∀ ℓ ∈ [0, n), p(uℓ |uℓ+1, . . . , un) = p(uℓ |uℓ+1) and a uniform top 
level prior un ∼ U. Since the distribution of uℓ is conditioned on 
uℓ+1, we call this a generative hierarchy.

We further assume that the density of predictive distributions 
p(uℓ |uℓ+1) is multivariate Gaussian,

p(uℓ |uℓ+1) = f uℓ; Wℓrℓ+1, diag(Aℓrℓ+1)−1
 

(7) 

where f is the multivariate Gaussian density with mean at point 
predictions Wℓrℓ+1 and diagonal covariance matrix with diagonal 

(Aℓrℓ+1)−1.
Under the two assumptions described in Eqs. 6 and 7, we have

− log p(u0, u1, . . . , un) + const = E. (8) 

Despite this origin of our energy in probability, it is useful here to 
caution that our network entails only parametric representations 
of the distributions defined in Eq. 7. Moreover, never in our neur-
onal dynamics do we sample from these distributions, or in fact 
any distribution. Rather, our neuronal dynamics Eq. 2 refine rep-
resentations uℓ towards a good (maximum a posteriori) point esti-
mate of latent variables. This is to be contrasted with e.g. recent 
work that aim to sample from the posterior distribution in predict-
ive coding networks (73).

Confidence as metrics in neuronal dynamics
In this work, we chose confidence as a metric for neuronal dy-
namics Eq. 2 (see (32) for an introduction to the use of metrics 
in gradient-based dynamics in neuroscience). Note that if we 
make the approximation of considering that predictions are 
fixed during inference (a “fixed-prediction assumption” (74)), 
the confidence is the second derivative of the energy. Second de-
rivatives provide additional information on the curvature of the 
energy landscape and are known to have desirable properties as 
metrics (second-order optimization). A striking limitation, how-
ever, lies in assuming fixed predictions during inference, the 
confidence is only a crude approximation of the actual second 
derivative without fixed predictions (see Supplementary 
Material, SI2 for the actual second derivative). An intuition of 
the effect of this change of metric on neuronal dynamics (Eq. 
2) is as normalizing the balance of importance between local 
and lower prediction errors, such that the importance of local er-
rors is 1.

Positivity of confidence
A sufficient condition for neuronal dynamics Eq. 2 to follow a des-
cent direction on E is that all terms of πℓ = Aℓrℓ+1 are positive. Let 
us assume that rates rℓ+1 are positive (the neuronal transfer func-
tion ϕ outputs positive values). Then a sufficient condition is that 
all components of Aℓ also are positive. There are multiple possible 
extensions of Eq. 5 to enforce this. One is to initialize all compo-
nents of Aℓ to positive values and to modulate the learning rate 
by the current weights

Ȧℓ ∝ Aℓ ◦ δℓrT
ℓ+1, (9) 

essentially preventing weights from crossing 0. This is necessary 
to stabilize learning when scaling up to more complex settings 
(see Supplementary Material, SI5). This is also in accordance 
with the general physiological fact that the sign of synaptic influ-
ence cannot change.

Simulation details
For the simulations presented in Fig. 4, we built the datasets by 
sampling N = 1000 points (x1, y1), . . . , (xN, yN) from each of the 
data distributions represented in Fig. 4di (by their 99.7% confi-
dence ellipses), and attaching the corresponding class label (either 
red or blue). We then build a 2x2 network where the top level ac-
tivity is a one-hot representation of the class label and the bottom 
level activity is the coordinate in space (x, y). We train this net-
work in supervised learning settings on the dataset by clamping 
both the top and bottom areas to the corresponding elements of 
the dataset and perform one step of parameters learning as de-
scribed in Eqs. 4 and 5.

We then test the capacity of our network to classify data by 
only clamping the bottom level to the data and letting the top- 
level activity follow Eq. 2. We select as the output class index 
the index of the maximum top-level activity and plot the corre-
sponding classification in Fig. 4dii. For comparison, we also plot 
in Fig. 4diii the classification results obtained with the same 2x2 
architecture but using classical predictive coding dynamics and 
following the same training and testing procedures. In Fig. 4e, 
we plot the associated performance, with the addition of the 
maximum-likelihood estimate with perfect knowledge of the 
means and variances.

Simulations and pseudocodes for confidence learning and 
Bayes-optimal integration in dynamic environments are reported 
in Supplementary Material, SI5 and SI6.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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