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Propagation of Spiking Moments in Linear Hawkes Networks\ast 

Matthieu Gilson\dagger and Jean-Pascal Pfister\ddagger 

Abstract. The present paper provides exact mathematical expressions for the high-order moments of spiking
activity in a recurrently connected network of linear Hawkes processes. It extends previous studies
that have explored the case of a (linear) Hawkes network driven by deterministic intensity functions
to the case of a stimulation by external inputs (rate functions or spike trains) with arbitrary corre-
lation structure. Our approach describes the spatio-temporal filtering induced by the afferent and
recurrent connectivities (with arbitrary synaptic response kernels) using operators acting on the in-
put moments. This algebraic viewpoint provides intuition about how the network ingredients shape
the input-output mapping for moments, as well as cumulants. We also show using numerical simu-
lation that our results hold for neurons with refractoriness implemented by self-inhibition, provided
the corresponding negative feedback for each neuron only mildly alters its mean firing probability.
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1. Introduction. Immense efforts in neuroscience have been invested in measuring neu-
ronal activity as well as the detailed connectivity between neurons. Such studies have been too
often conducted separately, despite the fact that neuronal activity and synaptic connectivity
are deeply intertwined. Indeed, the synaptic connectome determines the neuronal activity,
while the latter reshapes the connectome through activity-dependent plasticity. To better
understand the intricate link between activity and connectivity at the neuronal level, it is
important to build tractable network models that relate one to the other.

This paper examines how the neuronal activity is determined by the synaptic connectivity
in a network. More precisely, we investigate how the spiking statistics---described via statis-
tical moments or cumulants---propagates from an input population of neurons to an output
population of recurrently connected neurons; see Figure 1A. Their firing probability depends
on upstream neurons, as represented in Figure 1B. To formalize this relationship, one needs
to decide on a model for the neuronal dynamics.
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Figure 1. Overview of the present study. A (top): This schematic diagram represents a Hawkes network,
where nodes are the individual neurons that emit (or fire) spikes, borrowing the terminology used in neuroscience.
The afferent and recurrent connectivity are described by the kernel functions \gamma ik and \epsilon ij, respectively. (Bottom)
The goal of the present work is the characterization of the mapping between the moments of the input and output
spike trains (i.e., their correlation structure). They are represented by the matrices and cubes, respectively
representing the second- and third-order moments that are formally tensors with ``spatial"" coordinates (over
neurons) and temporal variables. The dashed gray arrows represent cross-order contributions from the input
to the output moments. B: This diagram depicts the average firing intensity of the downstream neurons in the
output population due to a spike fired by the dark gray neuron (assuming that \epsilon ij = 0 for i \not = j + 1). The black
curves represent the increase in average conditional intensity \langle \nu i\rangle y at the light gray neurons following the spike
in neuron 1, which is given by the convolution of the synaptic kernels \epsilon ij of the corresponding connections. C:
Similar diagram to panel B for a neuron with a self-connection with kernel \epsilon (thick solid black curve). The
effective recurrent kernel \widetilde \epsilon (dashed gray curve) is given by the superposition of \epsilon with its self-convolutions (thin
solid gray curves). Generalizing, we can calculate the effective recurrent kernel in the multivariate case for
interconnected neurons. It corresponds to the Green function of the network in the context of linear dynamics.

From the large class of existing neuronal models, we chose the simplest possible model in
order to remain tractable. Indeed, detailed biophysical models such as the Hodgkin--Huxley
model or the conductance-based models nicely describe the membrane potential dynamics
around the action potential but are harder to study when embedded in a network. Their
complexity often requires numerical simulation for their study, and optimization strategies
are still under debate; see, for example, (Brette et al., 2007; Lai and de Kamps, 2017). It can
be argued that it is only the timing of the action potential that matters for the postsynaptic
neuron, which motivates our choice for point processes where action potentials are events.
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A somewhat simple class of neuronal model is the so-called spike-response model (Gerstner
and Kistler, 2002), also known as exponential Poisson model or generalized linear model
(GLM) (Pillow et al., 2008). It is worth noting that such simple models often provide the best
fit to data in terms of predicting the timing of action potentials for a single neuron driven
by a controlled input current (Gerstner and Naud, 2009). Formally, such spiking neuron
models correspond to nonlinear versions of Hawkes processes when coupled together in a
network. For tractability purposes, we model here the spiking activity using a linear Hawkes
process (Hawkes, 1971a,b), also known as (linear) Poisson neurons (Kempter, Gerstner, and
van Hemmen, 1999). In the following we refer to the multivariate linear Hawkes process as
the Hawkes network.

Despite the obvious limitations of the linearity assumption (e.g., it precludes strong re-
fractoriness or inhibition), Hawkes' formalism has been extensively used to model recurrent
spiking networks (Gilson, Burkitt, and van Hemmen, 2010; Pfister and Tass, 2010; Mei and
Eisner, 2017). Indeed the reason for its wide adoption is its analytical tractability, which
precisely comes from the linear assumption. Besides neuroscience, the Hawkes process has
been used in several other disciplines, such as artificial intelligence (Etesami et al., 2016),
seismology (Le, 2018; Lima and Choi, 2018), epidemiology (Saichev, Maillart, and Sornette,
2013), and finance (Errais, Giesecke, and Goldberg, 2010; Bacry, Mastromatteo, and Muzy,
2015). Due to the event-like nature of its activity, intrinsic correlations arise and reverberate
as echoes induced by the recurrent connectivity; see Figure 1C. Here we build upon Hawkes'
results that describe the propagation of second-order correlations for mutually exciting point
processes (Hawkes, 1971a,b) and extend them to higher orders.

The vast majority of studies focuses on the first and second orders of spiking statis-
tics (Hawkes, 1971a,b; Gilson, Burkitt, and van Hemmen, 2010; Br\'emaud, Massouli\'e, and
Ridolfi, 2005; Tannenbaum and Burak, 2017). To the best of our knowledge, only two recent
studies have investigated higher-order cumulants (Jovanovi\'c, Hertz, and Rotter, 2015; Ocker
et al., 2017). In the earliest (Jovanovi\'c, Hertz, and Rotter, 2015), the authors derived a recur-
sive algorithm based on the theory of branching Hawkes processes to calculate the cumulants
for the spiking activity. The second study (Ocker et al., 2017) relies on path-integral represen-
tation to explore the cumulants, which are closely related to moments, for the Hawkes process
with possible nonlinearities. If the path-integral representation derived from field theory is
adequate to tackle nonlinearities, it requires approximations with a cumulant closure to ob-
tain self-consistency equations. A common limitation to both formalisms is that they provide
little intuition about how the moments may propagate in neuronal networks, which we aim
to address here focusing on its geometrical aspect---as will become clearer later; see also the
representation of moments in Figure 1A. Importantly, the case of neurons stimulated by in-
puts with an arbitrary correlation structure has not been explored yet for larger-than-second
orders, which is a focus of the present study.

A first motivation is that, although pairwise correlations have been argued to be sufficient
to represent experimental data (Barreiro et al., 2014), this view has been recently challenged,
and mechanisms related to higher-order correlations have been found to improve descriptive
statistical models (Shimazaki et al., 2015). In dynamic neuron models, even though population
mean-field dynamics can be captured by nonspiking models (Helias, Tetzlaff, and Diesmann,
2013; Grytskyy et al., 2013), networks with realistic sizes exhibit finite-size effects in their pair-
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wise correlations (van Albada, Helias, and Diesmann, 2015). Moreover, there is accumulating
evidence in biology that spike trains convey information in their correlated activity (Dettner,
M\"unzberg, and Tchumatchenko, 2016). This calls for analytical techniques to evaluate the
interplay between spiking correlated activity at arbitrary orders (as measured by moments or
cumulants) and network connectivity, as was done recently for binary neurons (Dahmen, Bos,
and Helias, 2016).

A motivation for investigating higher-than-second orders of correlations in Hawkes net-
works comes from the study of spike-timing-dependent plasticity (STDP). The established
formula (Hawkes, 1971a) is sufficient to analyze in recurrently connected networks the effect
of the so-called pairwise STDP: As the synaptic weights between neurons are modified de-
pending on the time difference between input and output spikes, the overall effect can be
captured by the spiking covariances (Gilson, Burkitt, Grayden, Thomas, and van Hemmen,
2009a; Gilson et al., 2009b; Pfister and Tass, 2010). However, the more elaborate model of
triplet STDP (Pfister and Gerstner, 2006; Gjorgjieva et al., 2011) requires knowledge about
the third order of the spike statistics, involving input-output-output spikes. To gain intuition,
a key is understanding how the synaptic connectivity shapes the input correlation structure
in a network, as illustrated in Figure 1A.

This led us to investigate a general solution for the spatio-temporal correlation structure
via moments of arbitrary orders in Hawkes processes as a function of the moments in the input
population. Our results are structured around three theorems. The first one describes how
moments (of arbitrary orders) propagate in feedforward networks, thereby generalizing the
results of (Kempter, Gerstner, and van Hemmen, 1999). The second theorem describes the
effect of recurrent connectivity within the output population, extending (Gilson et al., 2009b;
Pfister and Tass, 2010). Our calculations assume that the firing intensities of the neurons
remain positive at all times. We discuss the limitations of this assumption in an example
with self-inhibition. The last theorem translates the mappings for moments into mappings for
cumulants, in line with recent work (Jovanovi\'c, Hertz, and Rotter, 2015; Ocker et al., 2017).

2. Results. Let us consider an input population of m neurons whose spiking activity is
denoted by the vector of functions1 x(t) = (x1(t), . . . , xm(t)), where xj(t) is a superposition
of Dirac deltas at spike times, i.e., xj(t) =

\sum 
f \delta (t - txj,f ), and txj,f is the fth firing time of the

input neuron j. As illustrated in Figure 1A, this input population together with some driving
intensity function \lambda (t) = (\lambda 1(t), . . . , \lambda n(t)) feeds a network (output) population of n neurons
whose activity is denoted by y(t) = (y1(t), . . . , yn(t)), which are also a superposition of Dirac
deltas, i.e., yi(t) =

\sum 
f \delta (t  - tyi,f ). A Hawkes process formalizes how the output spikes y(t)

are generated from the history of input spikes \scrF x
t = \{ x(s)| s < t\} , the history of output spikes

\scrF y
t = \{ y(s)| s < t\} ,2 and the driving intensity \lambda (t). In the literature Hawkes processes are

often defined by an n-dimensional counting process Ny(t) = (Ny
1 (t), . . . , N

y
n(t)), where Ny

i (t)

gives the number of spikes from 0 to t for the network neuron i, i.e., Ny
i (t) =

\int t
0 yi(t

\prime ) dt\prime or,

1Depending on the context, x can be a given (deterministic) spike train or a random variable. For notational
convenience, we decided to use the same symbol x for both cases. The same holds true for \lambda . For example,
in the definition of the Hawkes process, x and \lambda are given (deterministic), whereas later on we compute the
statistics of the output population by averaging over the random variables x and \lambda such as in (8).

2Formally, the filtrations \scrF x
t and \scrF y

t are \sigma -fields.
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equivalently, yi(t) = dNy
i (t)/dt. The heart of Hawkes' theory lies in the conditional intensity

\nu i(t) that determines the probability of an event (here, a spike) via the increment of the
counting process dNy

i (t) = Ny
i (t+dt) - Ny

i (t) for neuron i in an infinitesimally small bin size
dt:

(1) \nu i(t) dt = Pr
\Bigl( 
dNy

i (t) = 1| \scrF y
t ,\scrF x

t , \lambda (t)
\Bigr) 
.

Alternatively, the increment dNy
i (t) at each time can be seen as resulting from a Poisson

process with the conditional intensity \nu i(t):

(2) dNy
i (t) \sim Poisson

\bigl( 
\nu i(t)dt

\bigr) 
.

For further details, see (Br\'emaud and Massouli\'e, 1996) or (Daley and Vere-Jones, 1988, sec-
tion 6.3) for the general theory on related point processes constructed using conditional in-
tensities. A consequence of this property is that \langle dNy

i (t)\rangle = \nu i(t)dt at all times, and hence
\langle yi(t)\rangle = \langle dNy

i (t)/dt\rangle = \nu i(t). Here the conditional expectation denoted by the angle brackets
is taken on the increment dNy

i (t)---or, equivalently, on yi(t)---at time t given the history of x
and y and the value of \lambda at time t (as in (1)). In the following, we denote the conditioning
variables as subscripts of the angle brackets, for instance, \langle yi(t)\rangle y,x,\lambda . The interested reader
can find further details in Daley and Vere-Jones (1988, section 7.2, Example 7.2).

In this paper we use the following definition for the Hawkes process.

Definition 1 (Hawkes process). The Hawkes process is an n-dimensional point process y(t)
whose conditional intensity \nu : \BbbR \rightarrow \BbbR n

+ is driven by a time-dependent intensity \lambda : \BbbR \rightarrow \BbbR n
+

and depends upon both the past input spiking activity \scrF x
t and its own past spiking activity \scrF y

t :

(3) \nu i(t) = \lambda i(t) + (\gamma ik \ast xk) (t) + (\epsilon ij \ast yj) (t) ,

where \gamma = \{ \gamma ik\} n,mi,k=1 : \BbbR \rightarrow \BbbR n\times m
+ is a matrix of ``synaptic"" kernels \gamma ik : \BbbR \rightarrow \BbbR + that describe

the causal effect from the input neuron xk on the network neuron yi. These functions are equal
to zero for all t \leq 0. Similarly \epsilon = \{ \epsilon ij\} n,ni,j=1 : \BbbR \rightarrow \BbbR n\times n

+ is a matrix of kernels \epsilon ij : \BbbR \rightarrow \BbbR +,
each corresponding to the recurrent interaction from neuron yj to neuron yi.

The definition in (3) has the implicit assumption that the right-hand side is always non-
negative, which is satisfied for our choice of \gamma and \epsilon here. Recall that this is not guaranteed
in general when these kernels have negative values. In such cases one can apply a rectifying
function to ensure that \nu i(t) \geq 0, which introduces nonlinearity to the formalism (Br\'emaud
and Massouli\'e, 1996; Galves and L\"ocherbach, 2016; Ocker et al., 2017; Gao and Zhu, 2018;
Raad, Ditlevsen, and L\"ocherbach, 2018).

Note that the convolution operator \ast is a matrix convolution (see (6) below). Note also
that in this paper we omit the summation symbol in line with Einstein's convention for tensor
calculus.

Remark 1 (atomic contributions and contraction of indices). Note that for an infinitesimally
small dt, the increment dNy

i (t) for the output neuron i and dNx
k (t) for the input neuron k

can take only 2 values: 0 or 1. In that case, we have for any p \in \BbbN +

(dNy
i (t))

p
= dNy

i (t) ,(4)

(dNx
k (t))

p = dNx
k (t) .
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Next, atomic contributions arise from the point-process nature of spike trains when taking
expectations of products of input spike trains xi(t) or output spike trains yi(t) for all possible
redundancies in the time variables together with the ``spatial"" coordinates.

Remark 1 can be directly used to compute moments for independent Poisson neurons. For
example, the second-order moment for the input population of independent Poisson neurons
yields

\langle xk1(t1)xk2(t2)\rangle x =

\left\{         
\biggl\langle 

\mathrm{d}Nx
k1

(t1)

\mathrm{d}t

\mathrm{d}Nx
k2

(t2)

\mathrm{d}t

\biggr\rangle 
x

if k1 \not = k2 or t1 \not = t2 ,\Biggl\langle \biggl( 
\mathrm{d}Nx

k1
(t1)

\mathrm{d}t

\biggr) 2
\Biggr\rangle 

x

if k1 = k2 and t1 = t2

= \langle xk1(t1)\rangle x \langle xk2(t2)\rangle x + \langle xk1(t1)\rangle x \delta k1k2\delta (t2  - t1) ,(5)

where we use (4) for the second term corresponding to t1 = t2 and k1 = k2. Note that the
second term of (5) dominates the first term, which is related to the Dirac delta function \delta (t2 - 
t1) due to the limit dt \rightarrow 0 in the denominator that remains after simplifying [dNx

k1
(t1)]

2 =
dNx

k1
(t1). In the remainder we refer to terms involving Kronecker deltas \delta k1k2 and Dirac deltas

\delta (t2  - t1) as contractions of indices (here, for 1 and 2).
We extend the standard convolution to a matrix form, which involves a matrix multipli-

cation as in (3).

Definition 2 (matrix convolution). For the kernel matrix \epsilon and vector y, the ith element of
the matrix convolution is given by

(6) (\epsilon ij \ast yj) (t) =
n\sum 

j=1

\int \infty 

0
\epsilon ij(u)yj(t - u)du .

Notation 1 (moments of order p). Let k = (k1, . . . , kp) denote a set of p coordinates kr \in 
Im = \{ 1, . . . ,m\} . The moment of order p of the input population evaluated at times t =
(t1, . . . , tp) is defined as

(7) Xp
\bfk (t) =

\Biggl\langle 
p\prod 

r=1

xkr(tr)

\Biggr\rangle 
x

.

Similarly, the moment of order p of the output population for the coordinates i = (i1, . . . , ip) \in 
Ipn and the time variables t = (t1, . . . , tp) is defined as

(8) Y p
\bfi (t) =

\Biggl\langle 
p\prod 

r=1

yir(tr)

\Biggr\rangle 
y,x,\lambda 

.

Note that the mathematical expectation corresponds to three sources of stochasticity, as indi-
cated by the superscript. Note that, due to the recurrent connectivity, the dependency of y on
itself also concerns the past activity.
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Remark 2 (symmetry of moments). The moments Xp
\bfk (t) and Y p

\bfi (t) have many symmetries.
For the example of the input moments, any permutation \Pi of Ip such that the transformed
coordinates \Pi (k) = (k\Pi (1), . . . , k\Pi (p)) and \Pi (t) = (t\Pi (1), . . . , t\Pi (p)) leaves X

p
\bfk (t) invariant:

(9) Xp
\Pi (\bfk )

\bigl( 
\Pi (t)

\bigr) 
= Xp

\bfk (t) .

Definition 3 (generalized spatio-temporal delta function). Let \=\delta \bfk (t) be the generalized delta
function defined for the set of coordinates k = (k1, . . . , kp) and times t = (t1, . . . , tp), which
combines the Kronecker and Dirac delta functions as

(10) \=\delta \bfk (t) =

\left\{   
1 if p \in \{ 0, 1\} ,\prod p

r=2 \delta (tr - 1  - tr) if k1 = \cdot \cdot \cdot = kp and p \geq 2 ,
0 otherwise.

Note that for p = 2, one recovers the product of the standard Kronecker delta with the Dirac
delta: \=\delta k1,k2(t1, t2) = \delta k1,k2\delta (t1  - t2). Note also that when the lower index k is omitted, we
will assume that k1 = \cdot \cdot \cdot = kp (i.e., single neuron case).

Example 1 (moment for a single spike train with oscillatory intensity). Before presenting the
general result, we provide an illustrative example to fix ideas and help the reader with concepts
and notation.

Case p = 2. For a single (input) neuron driven by a deterministic intensity function \mu ,
the contraction in the second-order moment corresponds to the condition t1 = t2 without
``spatial"" coordinates here, simplifying (5):

(11) \langle x(t1)x(t2)\rangle x = \mu (t1)\mu (t2) + \mu (t1) \delta (t2  - t1) .

Case p = 3. The third-order moment for a single spike train is given by

\langle x(t1)x(t2)x(t3)\rangle x = \mu (t1)\mu (t2)\mu (t3) + \mu (t1)\delta (t2  - t1)\mu (t3) + \delta (t1  - t3)\mu (t1)\mu (t2)

+ \mu (t1)\mu (t2)\delta (t3  - t2) + \mu (t1)\delta (t2  - t1)\delta (t3  - t1) .(12)

This expression exhibits two ``extreme"" cases where all time variables are equal, t1 = t2 = t3,
corresponding to the two Dirac deltas \delta (t2  - t1)\delta (t3  - t1) = \=\delta (t1, t2, t3) for the partition\bigl\{ 
\{ 1, 2, 3\} 

\bigr\} 
, and where they are all distinct, giving \mu (t1)\mu (t2)\mu (t3) for

\bigl\{ 
\{ 1\} , \{ 2\} , \{ 3\} 

\bigr\} 
. In

addition, the three remaining terms involve a contraction for 2 out of the 3 variables.

Numerical simulation. Figure 2 illustrates the moments for p = 2 and 3 with a single
spike train driven by a driving oscillatory intensity. Note that ``spatial"" coordinates k in the
above equation are simply ignored, together with the Kronecker deltas. Figures 2B, 2C, and
2E highlight the atomic contributions along the various ``diagonals"" where the time variables
coincide. Away from those subspaces, the spike densities are much lower, as can be seen in
the scaling of values in the middle and right plots of Figures 2C and 2E. Note that the main
diagonal for p = 3 is slightly larger than that for p = 2, as autocorrelation effects cumulate.

Proposition 1 (moments for inputs driven by deterministic intensity functions). Let \scrP p =
\scrP (Ip) denote the set of all partitions \Phi of the set Ip = \{ 1, . . . , p\} . If the input neurons are
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Figure 2. Input moments for a spike train. A: Spike raster (top plot) for 50 simulations using a driving
oscillatory intensity (bottom plot). B: Second-order moment (left plot) averaged over 10,000 simulations, where
darker pixels indicate a higher spike density. The middle and right diagrams illustrate the decomposition into
a contribution due to rate correlation (cofluctuations) and to atomic contributions (diagonal in thick black),
respectively. Each contribution corresponds to a partition of I2 = \{ 1, 2\} , as indicated below. C: Example slices
of the moment in panel B as indicated by the solid/dotted lines in the diagrams, along the diagonal t1 = t2 (left
diagram and plot) and for a fixed t1 (right diagram and plot; here the atomic contribution is not represented
for the theoretical prediction). The prediction curves (dashed) are calculated using (13). Note the difference in
scaling for the y-axis. D: Decomposition of the third-order moment using the partitions of I3 = \{ 1, 2, 3\} , similar
to panel B. The thick black lines indicate the diagonal planes and diagonal line for all possible contractions. E:
The left diagram and plot correspond to the main diagonal of the third-order moment with t1 = t2 = t3. The
right diagram and plot correspond to the diagonal plane with t1 = t2.
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independent of one another and driven by intensities \mu k(t), then the input moment of order p
with coordinates k = (k1, . . . , kp) at times t = (t1, . . . , tp) can be expressed as

(13) Xp
\bfk (t) =

\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=\delta \bfk S
(tS) \mu k \v S

(t \v S) ,

where S spans the disjoint subsets of \Phi whose union is Ip, with kS = \{ kr, r \in S\} and tS =
\{ tr, r \in S\} . In addition, each driving intensity \mu appears with a representative index, here
taken as the minimum \v S = min(S). Recall the convention \=\delta \bfk S

(tS) = 1 when S is a singleton.

Remark 3. The grouping of indices from a given subset S in (13) is a direct consequence
of the contraction highlighted in Remark 1, resulting in an atomic contribution where the
paired spatial coordinates and temporal variables related to S are involved in the generalized
delta function \=\delta .

Proof of Proposition 1. Equation (13) can be obtained using the moment generating func-
tion via its pth derivative for order p, as was done in previous works in similar contexts (Ocker
et al., 2017; Daley and Vere-Jones, 1988, section 5.2). Here we provide a proof by induction,
which highlights the key observation that every combination of contractions can be described
by a partition.

Let us assume that (13) is valid for all orders 1 \leq p\prime \leq p  - 1. Now considering the
order p with given coordinates k and time variables t in X\bfk (t), we denote by S\ast the set of
order indices in Ip - 1 such that coordinates and times are identical to their counterparts for p,
namely, S\ast = \{ r \in Ip - 1, kr = kp and tr = tp\} . Using the probabilistic independence as before,
we can write

Xp
\bfk (t) =

\Biggl\langle \prod 
r\in Ip\setminus S\ast 

xkr(tr)

\Biggr\rangle \Biggl\langle \prod 
r\in S\ast 

xkr(tr)

\Biggr\rangle 

=

\left(  \sum 
\Phi \prime \in \scrP (Ip\setminus S\ast )

\prod 
S\in \Phi \prime 

\=\delta \bfk S
(tS) \mu k \v S

(t \v S)

\right)  \=\delta \bfk S\ast (tS\ast ) \mu k \v S\ast (t \v S\ast )

=
\sum 

\Phi =\Phi \prime \cup \{ S\ast \} 
\Phi \prime \in \scrP (Ip\setminus S\ast )

\prod 
S\in \Phi 

\=\delta \bfk S
(tS) \mu k \v S

(t \v S) .(14)

In the second line, we have used the hypothesis for order p  - | S\ast | , where | S\ast | is the number
of elements in S\ast for the indices that are not in S\ast , as well as the contraction for all elements
in S\ast using (4). The previous expression is valid for each S\ast \subset Ip containing p, which is
determined by k and t. We conclude by observing that the above dichotomy of partitions \Phi 
actually spans the whole set \scrP (Ip) = \scrP p:

(15)
\bigcup 

S\ast \subset Ip
S\ast \ni p

\bigcup 
\Phi \prime \in \scrP (Ip\setminus S\ast )

\Phi \prime \cup \{ S\ast \} = \scrP (Ip) ,

which accounts for all possible configurations of k and t. This is also related to the decompo-
sition of the Bell number---giving the number of partitions \Phi \in \scrP p---in the sum of the Stirling
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numbers of the second kind sp,q---giving the number of partitions \Phi that have q groups. They
satisfy the relationship sp,q = sp - 1,q - 1 + qsp - 1,q for all 2 \leq q \leq p  - 1 (corresponding to the
above dichotomy), as well as the ``boundary"" condition sp,q = 1 when q = 1 or q = p.

The autocorrelation terms can be represented using diagram representations (Shchepanyuk,
1995).

2.1. Network with afferent connectivity. Now that we have introduced definitions and
concepts that will be useful in characterizing the high-order moments, we turn to the case of
a network with afferent connections but no recurrent connections. Theorem 1 is the first of
our two core results. We denote the total driving intensity function of the network neurons
that lumps together the driving intensity and the input influx by

(16) \nu \epsilon =0
i (t) = \lambda i(t) + (\gamma ik \ast xk) (t) .

Notation 2 (moment for the driving intensities \lambda ). To account for possibly stochastic func-
tions \lambda (e.g., a Cox process), we define the corresponding moment of order p for the coordinates
i \in Ipn at times t = (t1, . . . , tp) as

(17) \Lambda p
\bfi (t) =

\Biggl\langle 
p\prod 

r=1

\lambda ir(tr)

\Biggr\rangle 
\lambda 

.

Notation 3 (moment for the filtered input). As with \lambda , we define the moments of order p of
the filtered input x (with afferent kernels \gamma ) for the coordinates i \in Ipn at times t = (t1, . . . , tp)
as

(18) \Gamma p
\bfi (t) =

\Biggl\langle 
p\prod 

r=1

(\gamma irkr \ast xkr) (tk)

\Biggr\rangle 
x

.

Definition 4 (tensor convolution operator). Let \alpha ij : \BbbR \rightarrow \BbbR n,m be a matrix of kernels. We
define the 2p-dimensional tensor that replicates the matrix \alpha for all pairs of indices (irjr):

(19) \bfitalpha p
\bfi \bfj (t) =

p\prod 
r=1

\alpha irjr(tr) ,

with i = (i1, . . . , ip) \in Ipn, j = (j1, . . . , jp) \in Ipm, and t = (t1, . . . , tp). For a p-order tensor T p
\bfj 

with coordinates j, the tensor convolution \circledast between \bfitalpha p
\bfi \bfj and X\bfj evaluated at times t gives the

following tensor of order p:\Bigl( 
\bfitalpha p

\bfi \bfj \circledast T p
\bfj 

\Bigr) 
(t) =

\sum 
\bfj =(j1,...,jp)

\int 
\bfu \in \BbbR p

\bfitalpha p
\bfi \bfj (u)T

p
\bfj (t - u)du

=
\Bigl( 
\alpha i1j1

1\ast \cdot \cdot \cdot \alpha ipjp

p
\ast T p

j1,...,jp

\Bigr) 
(t) .(20)

The second line is a reformulation to stress that the convolutions of \alpha are applied on each of the
p dimensions---as indicated above each asterisk---on the tensor T p, followed by the summation
for the tensor product (similar to a matrix product), in line with (6).
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In essence, this convolution operator involves the same joint ``multiplication"" on paired
spatial and temporal dimensions (related to ki and ti, the temporal convolution being seen
as a function multiplication operator) as the matrix convolution in (6), but extended on all
dimensions of the tensor. In particular, this operation is linear.

Property 1. By using the tensor convolution operator defined above, the moments of the
filtered inputs can be conveniently expressed as

(21) \Gamma p
\bfi (t) =

\bigl( 
\bfitgamma p
\bfi \bfk \circledast Xp

\bfk 

\bigr) 
(t) ,

with i = (i1, . . . , ip) \in Ipn, k = (k1, . . . , kp) \in Ipm, and t = (t1, . . . , tp).

Proof of Property 1. Let xp
\bfk (t) =

\prod p
r=1 xkr(tr) be the pth order tensor associated to the

input spike train x. The moments of the filtered input (see (18)) can be expressed as

\Gamma p
\bfi (t) =

\Biggl\langle 
p\prod 

r=1

(\gamma irkr \ast xkr) (tk)

\Biggr\rangle 
x

=
\Bigl\langle \Bigl( 

\gamma i1k1
1\ast . . . \gamma ipkp

p
\ast xp

k1...kp

\Bigr) 
(t)
\Bigr\rangle 
x

=
\Bigl( 
\gamma i1k1

1\ast . . . \gamma ipkp
p
\ast 
\Bigl\langle 
xp
k1...kp

\Bigr\rangle 
x

\Bigr) 
(t)

=
\bigl( 
\gamma \bfi \bfk \circledast Xp

\bfk 

\bigr) 
(t) ,(22)

where the last line is obtained from the linearity of the convolution operator and from the
definition of the tensor convolution operator defined in (20).

Theorem 1 (input-output mapping for afferent connectivity). Consider an uncoupled Hawkes
network (Definition 1) whose neurons are excited by both inputs x (via afferent connections)
and driving intensities \lambda , which are probabilistically independent. The moment Y y,\epsilon 

\bfi of order
p of the network population depends on all smaller-order input moments Xq of the input
population as well as moments for the driving intensities \Lambda r (with 0 \leq q, r \leq p):

(23) Y p,\epsilon =0
\bfi (t) =

\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \sum 
A\cup B=\v \Phi 
A\cap B=\emptyset 

\Gamma 
| A| 
\bfi A

(tA) \Lambda 
| B| 
\bfi B

(tB) ,

where the moments \Gamma and \Lambda are defined in (17) and (21), respectively. Here we have defined
\v \Phi = \{ \v S, S \in \Phi \} , the set of minima \v S = min(S) over all groups S in the partition \Phi . Note that
the superscript of the moment indicates the current situation when the network population is
decoupled (i.e., \epsilon = 0).

Proof of Theorem 1. Provided the statistics of the inputs x and driving intensities \lambda is
known, the spiking activity of the network neurons is determined by the intensity function
\nu \epsilon =0
i in (16). Similar to (13) in Proposition 1, the Poisson nature of the spiking of the network
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neurons thus gives the following expression for the unconnected neurons with spike trains y:

Y p,\epsilon =0
\bfi (t) =

\Biggl\langle 
p\prod 

r=1

yir(tr)

\Biggr\rangle 
y,x,\lambda 

=

\Biggl\langle \sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=\delta \bfi S (tS)\nu 
\epsilon =0
i \v S

(t \v S)

\Biggr\rangle 
x,\lambda 

=
\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \Biggl\langle \prod 
S\in \Phi 

\nu \epsilon =0
i \v S

(t \v S)

\Biggr\rangle 
x,\lambda 

=
\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \Biggl\langle \prod 
r\in \v \Phi 

(\lambda ir(tr) + (\gamma irk \ast xk) (tr))

\Biggr\rangle 
x,\lambda 

.(24)

In the previous expression, the contractions basically extend the moment of smaller order
| \v \Phi | \leq p for the intensity \nu \epsilon =0 to the order p. Note that the last line is obtained using the
assumption that \nu \epsilon =0

i (t) = \nu i(t) \geq 0 in (3) with \epsilon ij = 0 for all i and t.

The product involving the sum of \lambda i \v S
+\gamma i \v Sk\ast xk gives 2| 

\v \Phi | terms, with | \v \Phi | being the number

of elements in \v \Phi . Now we develop this product to isolate the contributions originating from
the input moments of the same order on the one hand, and from the driving intensities on
the other hand, using the fact that they are statistically independent. To this end, we use the
following expression, which converts a product of a sum into a sum of products:

(25)
\prod 
r\in C

(ar + br) =
\sum 

A\cup B=C
A\cap B=\emptyset 

\Biggl( \prod 
r\in A

ar

\Biggr) \Biggl( \prod 
r\in B

br

\Biggr) 
,

where A and B can be empty sets. In our case, A \subset Ip is the subset of indices belonging to
\v \Phi that concern input neurons in (24), while B = \v \Phi \setminus A is the subset of indices that concern
\lambda . Because the random variables x and \lambda are independent, this gives

Y p,\epsilon =0
\bfi (t) =

\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \sum 
A\cup B=\v \Phi 
A\cap B=\emptyset 

\Biggl\langle \prod 
r\in A

(\gamma irk \ast xk) (tr)

\Biggr\rangle 
x

\Biggl\langle \prod 
r\prime \in B

\lambda ir\prime (tr\prime )

\Biggr\rangle 
\lambda 

=
\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \sum 
A\cup B=\v \Phi 
A\cap B=\emptyset 

\Gamma 
| A| 
\bfi A

(tA) \Lambda 
| B| 
\bfi B

(tB) .(26)

Note that the expression in (26) can be rewritten by grouping together the moments of
order | A| = q and | B| = r in the form

(27) Y p,\epsilon =0
\bfi (t) =

\sum 
0\leq q+r\leq p

\scrA p [\Gamma q,\Lambda r]\bfi (t) ,

where \scrA p is an operator that considers all possible combinations with the delta functions; see
Appendix A.
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Remark 4. When the network of unconnected neurons is not driven by an external inten-
sity (\lambda = 0), (26) can be simplified as

(28) Y p,\epsilon =0
\bfi (t) =

\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) 
\Gamma 
| \v \Phi | 
\bfi \v \Phi 

(t\v \Phi ) .

Even in this general case, the output moment Y p,\epsilon =0
\bfi of order p is an intricate function of the

moments of orders r \leq p, i.e., it depends on Xr
\bfj via \Gamma r

\bfj with r = | \v \Phi | . This contrasts with the

fact that the moment \Gamma p
\bfi depends only on the corresponding moment Xp

\bfi of the same order;
see Property 1.

Conversely, in the absence of spiking inputs (\gamma = 0) and when the driving intensities
\lambda i(t) are deterministic, the moments \Lambda simply come from the multiplication of the intensity
functions:

(29) Y p,\epsilon =0
\bfi (t) =

\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\bigl( 
\=\delta \bfi S (tS)\lambda \bfi \v S

(t \v S)
\bigr) 
.

2.2. Network with recurrent connectivity. The last step is to consider connections de-
termined by \epsilon between the network neurons, the second half of our core result.

Definition 5 (effective recurrent kernel). Let \widetilde \epsilon : \BbbR \rightarrow \BbbR n\times n denote the effective recurrent
kernel and be defined as

(30) \widetilde \epsilon ij(t) =\sum 
n\geq 0

\epsilon \ast nij (t) ,

where

(31) \epsilon \ast nij (t) =

\Biggl\{ \Bigl( 
\epsilon 
\ast (n - 1)
il \ast \epsilon lj

\Bigr) 
(t) if n > 0 ,

\=\delta ij(t, 0) if n = 0

is the nth order convolution.

Recall that the convolution is defined for kernel matrices; see (6). Because \epsilon ij(t) = 0 for
t \leq 0 and all pairs (i, j) (due to the causality requirement), \widetilde \epsilon ij(t) = 0 as well for t \leq 0. This
effective recurrent kernel is equivalent in the time domain to the matrix inverse of the identity
minus the ``spatio-temporal"" connectivity in the Fourier domain (Hawkes, 1971a).

Property 2. The effective recurrent kernel \widetilde \epsilon satisfies the following self-consistency equation:
(32) (\kappa \ast \widetilde \epsilon )ij (t) = \=\delta ij(t, 0) ,

where \kappa ij(t) = \=\delta ij(t, 0)  - \epsilon ij(t). Therefore, \widetilde \epsilon can be thought as the inverse of \kappa for the
convolution operator.

Proof of Property 2. By convolving the \epsilon kernel with the effective recurrent kernel \widetilde \epsilon , we
find (omitting the time variables)

(33) (\epsilon \ast \widetilde \epsilon )ij = \epsilon ik \ast 

\left(  \sum 
n\geq 0

\epsilon \ast nkj

\right)  =
\sum 
n\geq 1

\epsilon \ast nij = \widetilde \epsilon ij  - \=\delta ij ,

which we reorganize to factorize \widetilde \epsilon , obtaining (32).
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Example 2 (single neuron with self-connection and with driving intensity \lambda ). We first present
an illustrative version of our proof by induction for a single neuron with self-feedback and
driven by a deterministic intensity \lambda in the cases 1 \leq p \leq 3. In this example \langle \cdot \cdot \cdot \rangle =
\langle \cdot \cdot \cdot \rangle y, as there is no other source of stochasticity. Note that p = 2 corresponds to Hawkes'
results (Hawkes, 1971a) with moments instead of (auto)covariances. The motivation is to
provide a concrete case for stepping from orders p to p + 1, which is formalized in the proof
below.

Cases p = 1 and p = 2. The first-order moment for p = 1 corresponds to the mean firing
rate and can be calculated from the driving intensity function \lambda by solving the self-consistency
equation given by the second line of (3) using the equality for the intensity \langle y(t)\rangle = \langle \nu (t)\rangle :

(34) \langle y(t)\rangle = (\widetilde \epsilon \ast \lambda ) (t) .
For the second order, the point is to take into account the effects of spikes upon the future

spiking probability, with the effect of the self-feedback loop. Assuming t1 \leq t2 (gray semiplane
in Figure 3A), we can develop y(t2) in \langle yy\rangle (t1, t2) using (3). This holds because the intensity
function \nu (t2) requires knowledge of past spiking activity y(u) with u < t2, as illustrated by
the dark gray arrow in Figure 3A, moving toward the diagonal t1 = t2. This development
gives

\langle yy\rangle (t1, t2) = \langle y(t1)\nu (t2)\rangle + \langle y(t1)\rangle \delta (t2  - t1)

= \langle y(t1)
\bigl( 
\epsilon \ast y

\bigr) 
(t2)\rangle + \langle y(t1)\rangle \lambda (t2) + \langle y(t1)\rangle \delta (t2  - t1)

=
\bigl( 
\epsilon 
2\ast \langle yy\rangle 

\bigr) 
(t1, t2) + \langle y\rangle \lambda (t1, t2) + \langle y\rangle \delta 21(t1, t2) .(35)

Note that \nu is inside the angle brackets on the right-hand side of the first line, because
\nu (t2) and y(t1) are not independent when the difference in the time variables lies within
the range of \widetilde \epsilon . The last line is simply a rewriting using a specific notation with a line above
multivariate functions to indicate the order of the functions with respect to the time variables,
which will be useful for this example. In addition, we use the notation introduced in (20),

where
2\ast indicates the convolution performed on the second time variable t2 and the Dirac

delta \delta 21(t2) := \delta (t2  - t1) is a redundant expression as a function of t2, while keeping the
information about t1.

The solution \langle yy\rangle (t1, t2) must satisfy (35) for all t1 \leq t2, which is a Wiener--Hopf equation.
The atomic contribution (Dirac delta) acts as a ``boundary condition"" when t2 \rightarrow t1. Our
strategy is the following: we propose a solution for the moment of order p = 2 and verify that
it satisfies the required (35). As the solution is fully symmetric in t1 and t2, this implies that
the solution is also valid on the complementary space t2 \leq t1, being eventually valid for all
(t1, t2) \in \BbbR 2. The putative second-order moment is

(36) \langle yy\rangle (t1, t2) =
\Bigl( \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast (\lambda \lambda + \lambda \delta 21)

\Bigr) 
(t1, t2) .

Note that our notation does not require the time variables, allowing for compact writing. We
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t
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Development for p=3

Multivariate convolution for autocorrelation term

Figure 3. Schematic diagrams supporting the calculations for the second- and third-order moments. A:
The development in (35) corresponds to expressing y(t2) as a function of the past history. This requires that
t2 > t1, as illustrated by the gray upper triangle of the plane. The dark gray arrow indicates the ``direction""
of the development towards the past network activity (related to the convolution by \epsilon ), which is necessary to
evaluate the firing probabilities involved in the moment. B: Schematic representation of the twofold convolution
involved in (36) for the calculation of the second-order moment. The Dirac delta corresponds to a function
that is nonzero on the diagonal t1 = t2 only, as represented by the gray dashed line. The effect of the first
convolution on t1 ``spreads"" the diagonal function towards the ``future"" in the horizontal direction. Then the
convolution on t2 ``spreads"" the whole towards the ``future"" in the vertical direction, resulting in a symmetric
function. Note that the result is distinct from the outer product of the time vectors (\widetilde \epsilon \ast \lambda )(\widetilde \epsilon \ast \lambda ). C: Similar
diagram to panel A to indicate the subspace for the condition t1 \leq t2 \leq t3 and represent the development of the
moment for p = 3 in (38).

use the equality in (32) on \widetilde \epsilon 2\ast to obtain

\langle yy\rangle = \widetilde \epsilon 1\ast (\epsilon \ast \widetilde \epsilon + \delta )
2\ast (\lambda \lambda + \lambda \delta 21)

= \epsilon 
2\ast \langle yy\rangle + \widetilde \epsilon 1\ast \lambda \lambda + \widetilde \epsilon 1\ast \lambda \delta 21 .(37)

For the first term on the right-hand side on the upper line, the convolution by \epsilon \ast \widetilde \epsilon on the
second variable t2 has been rewritten by moving \epsilon out, while the rest is in fact \langle yy\rangle in (36). In
the second term, the convolution by the Dirac on t2 leaves the corresponding \lambda unchanged, so
we obtain two terms involving \widetilde \epsilon \ast \lambda (t1) = \langle y\rangle (t1); see the solution for the first-order moment
in (34). Together, these three terms are the right-hand side of (35), which is thus satisfied.

Note also that \widetilde \epsilon (t) = 0 for t < 0 (reflecting causality of the overall ``feedback"" kernel),

which implies that the operator \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast applied on the 2-dimensional function under the overline
only ``spreads"" the function mass towards the ``future"" (see Figure 3B).

D
ow

nl
oa

de
d 

06
/1

7/
20

 to
 1

30
.9

2.
24

5.
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2020 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PROPAGATION OF MOMENTS IN LINEAR HAWKES NETWORKS 843

Case p = 3. Following the previous section, we extend the calculations to the case p = 3
in order to prepare for the generalization to arbitrary p \geq 2. As with p = 2, we consider the
ordering t1 \leq t2 \leq t3 (gray subspace in Figure 3C), which allows the development of the third
time variable as was done in (35):

(38) \langle yyy\rangle (t1, t2, t3) = \epsilon 
3\ast \langle yyy\rangle (t1, t2, t3) + \langle yy\rangle \lambda (t1, t2, t3) + \langle yy\rangle \delta 32(t1, t2, t3) ,

with the Dirac corresponding to the ``boundary condition"" when t3 \rightarrow t2, corresponding to the
``lower"" tilted plane of the gray subspace which the dark gray arrow points to in Figure 3C.
Note that this involves only the atomic contribution \delta 32 (\delta 21 is in yy corresponding to (t1, t2));
the other \delta 31 alone is not possible in this space. See also the discussion in Example 1 for the
second-order input moments. Now we pursue the calculations without the time variables in
arguments, as before for p = 2. The putative symmetric solution is

(39) \langle yyy\rangle = \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast \widetilde \epsilon 3\ast (\lambda \lambda \lambda + \lambda \lambda \delta 32 + \lambda \lambda \delta 31 + \lambda \delta 21\lambda + \lambda \delta 21\delta 32) ,

which involves the contractions for all partitions of \{ 1, 2, 3\} , in a similar fashion to (23). We
use again (32) as in (37) to obtain the convolution of \epsilon with \langle yyy\rangle on t3 and regroup the
other terms where the convolution with t3 vanishes because of the Dirac in order to use the

expression of the second-order moment in (36), namely, \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast (\lambda \lambda + \lambda \delta 21) = \langle yy\rangle :

\langle yyy\rangle = \epsilon 
3\ast \langle yyy\rangle + \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast (\lambda \lambda \lambda + \lambda \delta 21\lambda ) + \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast (\lambda \lambda \delta 32 + \lambda \delta 21\delta 32) + \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast \lambda \lambda \delta 31

= \epsilon 
3\ast \langle yyy\rangle + \langle yy\rangle \lambda + \langle yy\rangle \delta 32 + \widetilde \epsilon 1\ast \widetilde \epsilon 2\ast \lambda \lambda \delta 31 .(40)

What remains to be seen is that the condition t1 \leq t2 \leq t3 implies that \delta 31 = 0 always: when
t1 = t3, in fact we have t1 = t2 = t3, which corresponds to \delta 21\delta 31. This means that the last
term in (40) vanishes and (38) is satisfied. The symmetry argument ensures the validity over
all (t1, t2, t3), as will be formalized below.

Numerical simulation. The upper plot in Figure 4A illustrates that the rhythm of the
output spiking is altered by the recurrent self-connection. This comes from the fact that, for
an excitatory self-connection, output spikes momentarily increase the firing probability, as
can be seen when comparing the green curve with the dotted black curve in the bottom plot.
The output first-order moment in Figure 4B (solid gray curve for the simulation and dashed
black curve for the prediction) is above the input first-order moment related to the underlying
driving intensity \lambda (dotted black curve). Note also the shift to later time.

The decomposition of the second-order moment in Figure 4C illustrates that the effect of
autocorrelations (right plot) spreads from the diagonal due to the self-connection. The main
diagonal for p = 2 in Figure 4D has larger values than the curve for p = 1 in Figure 4B. In
Figure 4E, the main diagonal for p = 3 (gray curve in the left plot) is even larger, indicating
that effects due to autocorrelation cumulate (as for input moments in Figure 2). The slice
of the output third-order moment (right matrix in Figure 4E) has smaller value, but note
the high spike density along the diagonal of the right matrix due to the spreading of atomic
contributions by the recurrent kernel \epsilon .
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Figure 4. Output moments for a single neuron with self-connection. A: Spike raster (top plot) for 50
simulations for a neuron, similar to Figure 2. In the bottom plot, the driving oscillatory intensity \lambda (dotted
black curve) is compared with the firing intensity \nu (green curve), which is affected by the neuron's firing. B:
first-order moment (solid gray curve) with theoretical prediction (dashed black curve). The dotted black curve
indicates the driving intensity \lambda . C: The two left plots represent the input-output mapping for the second-order
moment, averaged over 10,000 simulations (darker pixels indicate a higher spike density). The two right plots
illustrate the decomposition into a contribution due to rate correlation (cofluctuations, ``naive"" contribution)
and that due to autocorrelation. Note that the right plot corresponds to Figure 3B. The equations above refer
to the terms in (37). D: Simulation (gray curve) and theoretical prediction (dashed black curve) of the diagonal
of the matrix for the output moment in panel C. E: Example slices for the third-order moment, as indicated by
the left diagram (color coded). All prediction curves are calculated using (37) and (40).

Theorem 2 (input-output mapping for recurrent connectivity). The moment Y p
\bfi of order p of

the Hawkes process (Definition 1) of the network population can be expressed as

(41) Y p
\bfi (t) =

\Bigl( \widetilde \bfitepsilon p\bfi \bfj \circledast Y p,\epsilon =0
\bfj 

\Bigr) 
(t) .

The effects of the recurrent connectivity on the input moments are determined by spatio-
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temporal filtering described by the effective recurrent kernel \widetilde \bfitepsilon p defined similarly to (19) on the
moment for uncoupled neurons in (23).

Proof of Theorem 2. Compared to Example 2, we consider the general case where inputs
and/or external intensities drive the network neurons via \nu \epsilon =0 in (16). Let us introduce the
conditional moment Mp

\bfi (t) of order p defined as

(42) Mp
\bfi (t) =

\Biggl\langle 
p\prod 

r=1

yir(tr)

\Biggr\rangle 
y| x,\lambda 

,

where the conditioning is over the input activity x and the driving intensities \lambda . Note that
the statistical averaging over x and \lambda of the conditional moment gives the (unconditional)
moment defined in (8):

\bigl\langle 
Mp

\bfi (t)
\bigr\rangle 
x,\lambda 

= Y p
\bfi (t). To demonstrate (41), we prove by induction the

following result on Mp
\bfi (t), which straightforwardly leads to the expression in Theorem 2 by

taking the same statistical averaging over x and \lambda as done above:

(43) Mp
\bfi (t) =

\Bigl( \widetilde \bfitepsilon p\bfi \bfj \circledast Mp,\epsilon =0
\bfj 

\Bigr) 
(t) ,

where the conditional moment of order p in the absence of recurrent coupling (\epsilon = 0) is defined
as

(44) Mp,\epsilon =0
\bfj (t) =

\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=\delta \bfj S (tS) \nu 
\epsilon =0
j \v S

(t \v S) .

In (43) the effect of the past spiking activity of y due to the recurrent connectivity \epsilon is taken
care of by all \widetilde \epsilon , considering \nu \epsilon =0 to be ``deterministic"" from the viewpoint of y, provided x
and \lambda are known.

The conditioned moment Mp
\bfi (t) in (43) must obey the constraints imposed by the dynam-

ics in (3). Under the condition on the time variables t1 \leq \cdot \cdot \cdot \leq tp, we can develop yip(tp)
in the Mp

\bfi (t) using the past activity of (y1(t), . . . , yp(t)) for t < tp and the intensity \nu \epsilon =0
ip

(tp).
Let i = (i1, . . . , ip) denote the coordinates and t = (t1, . . . , tp) the time variables. The pth
order correlation of the output population can be expressed as

Mp
\bfi (t) =

\Biggl\langle 
p\prod 

r=1

yir(tr)

\Biggr\rangle 
y| x,\lambda 

=

\Biggl\langle 
p - 1\prod 
r=1

yir(tr) \cdot \nu ip(tp)

\Biggr\rangle 
y| x,\lambda 

+

\Biggl\langle 
p - 1\prod 
r=1

yir(tr)

\Biggr\rangle 
y| x,\lambda 

\=\delta ip - 1ip(tp - 1, tp) .(45)

Note that the generalized delta corresponds to the ``boundary condition"" tp = tp - 1, as done
in the above examples to moments. A similar condition for the time lag was used in the case
of covariances (Hawkes, 1971a; Gilson et al., 2009b). By using the development of \nu i(t) =
(\epsilon ij \ast yj) (t) + \nu \epsilon =0

i (t) (see (3) and (16)) and by setting i\prime = (i1, . . . , ip - 1), which contains the
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p - 1 first elements of i, and similarly t\prime = (t1, . . . , tp - 1), we have

Mp
\bfi (t) =

\Bigl( 
\epsilon ip,jp

p
\ast Mp

\bfi \prime jp

\Bigr) 
(t) +

\Biggl\langle 
p - 1\prod 
r=1

yir(tr) \cdot \nu \epsilon =0
ip (tp)

\Biggr\rangle 
y| x,\lambda 

+

\Biggl\langle 
p - 1\prod 
r=1

yir(tr)

\Biggr\rangle 
y| x,\lambda 

\=\delta ip - 1ip(tp - 1, tp)

=
\Bigl( 
\epsilon ip,jp

p
\ast Mp

\bfi \prime jp

\Bigr) 
(t) +Mp - 1

\bfi \prime (t\prime )
\Bigl( 
\nu \epsilon =0
ip (tp) + \=\delta ip - 1ip(tp - 1, tp)

\Bigr) 
,(46)

where the conditioned moment of order p  - 1 appears on the right-hand side. Therefore, we
can use (43) for the order p - 1:

Mp - 1
\bfi \prime (t\prime )

\Bigl( 
\nu \epsilon =0
ip (tp) + \=\delta ip - 1ip(tp - 1, tp)

\Bigr) 
=
\Bigl( \widetilde \bfitepsilon p - 1

\bfi \prime \bfj \prime \circledast Mp - 1,\epsilon =0
\bfj \prime 

\Bigr) 
(t\prime )

\Bigl( 
\nu \epsilon =0
ip (tp) + \=\delta ip - 1ip(tp - 1, tp)

\Bigr) 
= \widetilde \bfitepsilon p - 1

\bfi \prime \bfj \prime 

p - 1
\circledast 

\left(   \sum 
\Phi \in \scrP 0

p - 1

\prod 
S\in \Phi 

\=\delta \bfj S (tS) \nu 
\epsilon =0
j \v S

(t \v S)
\Bigl( 
\nu \epsilon =0
ip (tp) + \=\delta ip - 1ip(tp - 1, tp)

\Bigr) \right)   
= \widetilde \bfitepsilon p - 1

\bfi \prime \bfj \prime 

p - 1
\circledast 

\left(  \sum 
\Phi \in \scrP 0

p

\prod 
S\in \Phi 

\=\delta \bfj S (tS) \nu 
\epsilon =0
j \v S

(t \v S)

\right)  
= \widetilde \bfitepsilon p - 1

\bfi \prime \bfj \prime 

p - 1
\circledast Mp,\epsilon =0

\bfj \prime ip
(t) .(47)

Note that the tensor convolution
p - 1
\circledast applies to the first p  - 1 indices j\prime = (j1, . . . , jp - 1)

of the tensor of dimension p. In the third line of (47), we only retain the partitions that
contribute to the summation under the condition t1 \leq \cdot \cdot \cdot \leq tp. To do so we define the subset
\scrP 0
p - 1 \subset \scrP p - 1 of ordered partitions \Phi , where the groups S \in \Phi consist of all successive indices

between \v S = min(S) and max(S) (equal for singletons). Next, we integrate the elements in
the squared brackets to the sum by augmenting the partitions \Phi \in \scrP 0

p - 1 to partitions in \scrP 0
p .

Note that the passage from the second line to the fifth line in (47) also corresponds to taking
\epsilon = 0 in (45).

Going back to (46), we isolate Mp
\bfi (t) on the left-hand side:

(48)
\Bigl( 
\kappa ip,jp

p
\ast Mp

\bfi \prime jp

\Bigr) 
(t) = \widetilde \bfitepsilon p - 1

\bfi \prime \bfj \prime 

p - 1
\circledast Mp,\epsilon =0

\bfj \prime ip
(t) ,

where \kappa ij(t) = \=\delta ij(t, 0) - \epsilon ij(t) (see Property 2). Using the property of \widetilde \epsilon in (32), we obtain

Mp
\bfi (t) =

\Bigl( \widetilde \epsilon ipj\prime p p
\ast 
\Bigl( 
\kappa j\prime p,jp

p
\ast Mp

\bfi \prime jp

\Bigr) \Bigr) 
(t)

=

\biggl( \widetilde \epsilon ipjp p
\ast 
\biggl( \widetilde \bfitepsilon p - 1

\bfi \prime \bfj \prime 

p - 1
\circledast Mp,\epsilon =0

\bfj \prime jp

\biggr) \biggr) 
(t)

=
\Bigl( \widetilde \bfitepsilon p\bfi \bfj \circledast Mp,\epsilon =0

\bfj 

\Bigr) 
(t) .(49)
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Note that so far we have only established the validity of this result for t1 \leq \cdot \cdot \cdot \leq tp. As
mentioned above, this is equivalent to considering only ordered partitions \scrP 0

p . The generaliza-
tion to an arbitrary t = (t1, . . . , tp) can be obtained by noting that an arbitrary t = (t1, . . . , tp)
can be mapped to an ordered version using permutations, say \Pi (t) = t\prime = (t\prime 1 \leq \cdot \cdot \cdot \leq t\prime p).
The partition set \scrP 0

p is thus replaced by
\bigl\{ 
\Pi (\Phi ),\Phi \in \scrP 0

p

\bigr\} 
, with \Pi (\Phi ) being the partition of the

image indices via \Pi . Note that this covers the entire set of all partitions \scrP p when considering
all possible permutations. This concludes the proof by induction.

Remark 5 (large population size). In the limit of large population size (n \rightarrow \infty ) and in
the absence of the driving intensities (\lambda = 0), the output moment of order p can simply be
approximated by the single dominating term

(50) Y p
\bfi (t) \simeq 

\Bigl( \widetilde \bfitepsilon p\bfi \bfj \circledast \bfitgamma p
\bfj \bfk \circledast Xp

\bfk 

\Bigr) 
(t) .

This corresponds to the partition \Phi = \{ Ip\} and has a contribution of order np, whereas all
other partitions \Phi \prime \not = \Phi give a contribution of order np - | \Phi \prime | +1 \ll np, which is negligible.

2.3. Further examples.

Example 3 (interplay between afferent and recurrent connections). Here we consider three
cases of a single neuron where the amplification determined by the weights is the same; namely,
the integral of \gamma \ast \widetilde \epsilon is identical across all three cases. In this way, the output neuron has the
same firing rate in all cases and the point is the comparison of its spike-correlation structure.
We rescale unitary kernels rescaled by the weights w\mathrm{a}ff and w\mathrm{r}\mathrm{e}\mathrm{c} for \gamma and \epsilon , respectively.
The simulation results in Figure 5 show that the distinct types of connectivity have strong
influences on the output correlation structure. The combination of afferent and recurrent
connections leads to a spreading of the density of the second- and third-order moments.
Although the afferent connection does not amplify the driving input in the right configuration,
the autocorrelation of the input neuron contributes to a stronger correlation structure for the
output neuron. Recall that, because all configurations have the same firing rate, the difference
lies in the temporal distribution of the spikes, which are more ``bursty"" due to the recurrent
connectivity. In other words, the presence of the input neuron with the afferent connection
further strengthens the bursting.

Up to now, we have used synaptic kernels with nonnegative values to ensure that the
firing intensity in (3) is always nonnegative, which is necessary in our calculations. Now we
consider negative synaptic connections to see how our calculations hold despite violating this
assumption.

Example 4 (two neurons with refractory self-connections and mutual excitation). For the two
neurons with self-inhibition in Figure 6A, each output spike triggers a temporary decrease of
their firing intensity, thereby implementing relative refractoriness. Figure 6B compares the
time courses of the two synaptic kernels for excitation (as used until now) and self-inhibition
for refractoriness. In order to prevent ``negative firing intensity"" (corresponding to dotted
gray curves below the horizontal line at 0 in Figure 6C), we used a rectification function
such that the firing intensity remains nonnegative, namely, \nu \geq 0 (solid gray curve). This
translates to a nonlinear nonnegative-valued function on the right-hand side of (3), here
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Figure 5. Comparison between the output moments for various connectivity configurations with a single
output neuron. The top matrix row corresponds to the second-order moment and the bottom row to a diagonal
plane of the third-order moment. The same driving oscillatory intensity is fed to the neuron on the left of
each diagram, in particular directly to the output neuron for the middle column. We compare the following
configurations. Left column: feedforward network with w\mathrm{a}ff = 2 (and w\mathrm{r}\mathrm{e}\mathrm{c} = 0). Middle column: feedforward
network with w\mathrm{r}\mathrm{e}\mathrm{c} = 0.5. Right column: feedforward network with w\mathrm{a}ff = 1 and w\mathrm{r}\mathrm{e}\mathrm{c} = 0.5. As before, the plots
are results averaged over 10,000 simulations.

taken as \nu i(t) = [\cdot \cdot \cdot ]+. As mentioned earlier, this situation violates the hypothesis behind
our calculations and is expected to result in errors between the predicted moments and their
empirical counterparts. As an example, Figure 6D displays the first-order moments for the
two neurons with w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} = 0.1 (as in Figure 6C), which match well the theory. In contrast,
the discrepancy with the theory is larger for w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} = 0.3 in Figure 6E. Note that their first-
order moments are different for the two neurons because of the distinct excitatory weights
that connect them. When increasing the refractory weight w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}, the firing rate obtained
in the simulation deviates from its expected value calculated from the theory: the predicted
value is lower because our calculations involve ``negative firing intensity,"" as shown for the
mean firing rate over the two neurons in Figure 6F. Similarly, the accuracy of the moments
decreases for larger w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}, corresponding to larger errors in Figure 6G. Note that the error in
Figure 6G includes finite size effects; i.e., it involves the empirical error due to the simulation
over a limited period of time. In general, such errors may also be influenced by the specific
choice of the synaptic kernel.

3. Relationship with cumulants. We end by relating our results with previous work (Jo-
vanovi\'c, Hertz, and Rotter, 2015; Ocker et al., 2017) that described the activity in Hawkes

D
ow

nl
oa

de
d 

06
/1

7/
20

 to
 1

30
.9

2.
24

5.
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2020 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PROPAGATION OF MOMENTS IN LINEAR HAWKES NETWORKS 849

0.00

0.01

0 100 200 300
time after spike (ms)

−0.05

0.00

   
   
   
   
   
   
   
   
   
   
   
   
 p
os

t-s
yn

ap
tic

 p
ot

en
tia

l

0.0 0.2 0.4 0.6
refractory strength

0

10

20

30

40

m
ea

n 
fir
in
g 
ra
te

theory
empirical

0 100
time (ms)

−40
0

40
80

120

fir
in
g 
in
te
ns

ity

0 100
−40

0
40
80

120

fir
in
g 
in
te
ns

ity

0 100
time (ms)

0.00

0.05

sp
ik
e 
co

un
t

0 100
0.00

0.05

sp
ik
e 
co

un
t

0.0 0.2 0.4 0.6
refractory strength

0.00

0.02

0.04

0.06

no
rm

al
ize

d 
er
ro
r

m1
m2
m3

A Neurons with

refractoriness

C D

F G

1

2

+0.6 +0.4

-w
refrac

-w
refrac

0 100
time (ms)

0.00

0.05

sp
ik
e 
co

un
t

0 100
0.00

0.05

sp
ik
e 
co

un
t

w
refrac 

= 0.1 w
refrac 

= 0.3w
refrac 

= 0.1 E

B

Figure 6. Influence of refractoriness on the moment evaluation. A: Schematic diagram of two neurons that
mutually excite each other with distinct weights and have inhibitory self-connections which model refractoriness.
B: Comparison of the time courses of the kernels used for excitatory and self-inhibitory synapses. The excitatory
kernel (top) corresponds to a double exponential (exp( - t/\tau \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{y}) - exp( - t/\tau \mathrm{r}\mathrm{i}\mathrm{s}\mathrm{e}))/(\tau \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{y} - \tau \mathrm{r}\mathrm{i}\mathrm{s}\mathrm{e}) with \tau \mathrm{r}\mathrm{i}\mathrm{s}\mathrm{e} = 1 ms
and \tau \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{y} = 5 ms, as used before in other figures. The inhibitory kernel used for refractoriness (bottom) is
a simple decaying exponential exp( - t/\tau \mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c})/\tau \mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} with \tau \mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} = 1.5 ms. C: Example firing intensity for the
two neurons 1 (bottom) and 2 (top), where spikes are indicated by crosses. Here the refractory weight is set to
w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} = 0.1. The driving oscillatory intensity \lambda is represented by the dotted black curve. D: First-order moment
(solid gray curve) with theoretical prediction (dashed black curve) for the two neurons and w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} = 0.1, averaged
over 10,000 simulations. E: Same as panel D for stronger refractoriness with w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} = 0.3. F: Predicted (dashed
black curve) and empirical (solid gray curve) mean firing rate as a function of the refractory weight w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}.
As before, the results correspond to the average over 10,000 repetitions of the same network. G: Normalized
error for the first- to third-order moments when varying w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}. It corresponds to the difference between the
theoretical and empirical curves in panel C, squared and integrated over the 100 ms period. The normalization
consists in dividing by the firing rate. The nonzero normalized error at w\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} = 0 comes from the finite number
of simulation repetitions.

networks using cumulants instead of moments. These studies were limited to the case of neu-
rons driven by deterministic intensities and focused on cumulants because of the theoretical
tools that they applied to the present problem---respectively, Hawkes branching process and
field theory. Cumulants and moments are two manners to describe the spiking statistics, and
the genuine relationship between them comes from their generating functions (Balakrishnan,
Johnson, and Kotz, 1998; Daley and Vere-Jones, 1988, section 5.2). Let E\alpha (\bfitzeta ,k, t) be the mo-
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ment generating function for the multivariate random variable \alpha \bfk (t) = (\alpha k1(t1), . . . , \alpha kp(tp)):

(51) E\alpha (\bfitzeta ,k, t) =

\Biggl\langle 
exp

\Biggl( 
p\sum 

r=1

\zeta r\alpha kr(tr)

\Biggr) \Biggr\rangle 
\alpha 

,

where \bfitzeta = (\zeta 1, . . . , \zeta p)
T . This moment generating function can be used to express the pth-

order moment over the coordinates k and times t:

(52)

\Biggl\langle 
p\prod 

r=1

\alpha kr(tr)

\Biggr\rangle 
\alpha 

=
\partial pE\alpha (\bfitzeta ,k, t)

\partial \zeta 1 \cdot \cdot \cdot \partial \zeta p

\bigm| \bigm| \bigm| 
\bfitzeta =0

=
\partial pE\alpha (\bfitzeta ,k, t)

\partial \bfitzeta 

\bigm| \bigm| \bigm| 
\bfitzeta =0

.

The cumulant generating function for the random variable \alpha is given by

(53) K\alpha (\bfitzeta ,k, t) = logE\alpha (\bfitzeta ,k, t) .

Notation 4 (cumulant). The cumulants of order p for the indices k = (k1, . . . , kp) at times
t = (t1, . . . , tp) for the input x, for the driving intensity \lambda , the filtered input \gamma \ast x, and the
output y are defined, respectively, as

\=Xp
\bfk (t) =

\partial pKx(\bfitzeta ,k, t)

\partial \bfitzeta 

\bigm| \bigm| \bigm| 
\bfitzeta =0

,(54)

\=\Lambda \bfi (t) =
\partial pK\lambda (\bfitzeta ,k, t)

\partial \bfitzeta 

\bigm| \bigm| \bigm| 
\bfitzeta =0

,(55)

\=\Gamma \bfi (t) =
\partial pK\gamma \ast x(\bfitzeta ,k, t)

\partial \bfitzeta 

\bigm| \bigm| \bigm| 
\bfitzeta =0

,(56)

\=Y\bfi (t) =
\partial pKy(\bfitzeta ,k, t)

\partial \bfitzeta 

\bigm| \bigm| \bigm| 
\bfitzeta =0

.(57)

Property 3. The formal relationship between the moment Xp
\bfk (t) of order p and cumulants

\=Xp\prime 

\bfk \prime (t\prime ) of order p\prime \leq p---here presented for the inputs---is given by

(58) Xp
\bfk (t) =

\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=X
| S| 
\bfk S

(tS) ,

where \Phi are the partitions of Ip composed of disjoint subsets S.

Proof of Property 3. The present proof---inspired by previous work (Daley and Vere-Jones,
1988; Balakrishnan, Johnson, and Kotz, 1998)---relies on the following general result for the
(partial) derivative of exp (f) with respect to variables \bfitzeta = (\zeta 1, . . . , \zeta p) for an arbitrary func-
tion f without specified arguments:

(59)
\partial p exp (f)

\partial \bfitzeta 
=

\partial p exp (f)

\partial \zeta 1 \cdot \cdot \cdot \partial \zeta p
=

\left(  \sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\partial | S| f

\partial \bfitzeta S

\right)  exp (f) ,
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which involves all partitions \Phi \in \scrP p and the partial derivatives \partial | S| f
\partial \bfitzeta S

of order | S| with respect
to the variables \zeta r whose indices r \in S. For p = 1 with \zeta 1, we have the univariate case

(60)
\partial exp (f)

\partial \zeta 1
=

\partial f

\partial \zeta 1
exp (f) .

To demonstrate (59), we assume the expression to be valid for p - 1 and derive it for p, using
a proof by induction. Separating \zeta p from the remaining variables \bfitzeta \prime = (\zeta 1, . . . , \zeta p - 1), we use
(59) for p - 1:

\partial p exp (f)

\partial \bfitzeta 
=

\partial 

\partial \zeta p

\partial p - 1 exp (f)

\partial \bfitzeta \prime 

=
\partial 

\partial \zeta p

\left(  \left(  \sum 
\Phi \in \scrP p - 1

\prod 
S\in \Phi 

\partial | S| f

\partial \bfitzeta S

\right)  exp (f)

\right)  
=

\left(  \sum 
\Phi \in \scrP p - 1

\partial 

\partial \zeta p

\Biggl( \prod 
S\in \Phi 

\partial | S| f

\partial \bfitzeta S

\Biggr) \right)  exp (f) +

\left(  \sum 
\Phi \in \scrP p - 1

\prod 
S\in \Phi 

\partial | S| f

\partial \bfitzeta S

\right)  \partial f

\partial \zeta p
exp (f) ,(61)

where the derivative with respect to \zeta p applied to the product yields two terms. The second
term corresponds to (60), which can be assimilated to the partition \Phi \prime \in \scrP p such that \Phi \prime =
\Phi \cup 

\bigl\{ 
\{ p\} 

\bigr\} 
. The first term actually gives | \Phi | terms, one for each subset S of the product,

which depends on the actual partition \Phi . For each \Phi , we construct | S| partitions \Phi \prime \in \scrP p by
adding the index p to one of the subsets S \in \Phi . Because a partition \Phi \in \scrP p can only be of
one of the two types, we end up with

\partial p exp (f)

\partial \bfitzeta 
=

\left(  \sum 
\Phi \in \scrP p\setminus \scrQ p

\prod 
S\in \Phi 

\partial | S| f

\partial \bfitzeta S
+
\sum 
\Phi \in \scrQ p

\prod 
S\in \Phi 

\partial | S| f

\partial \bfitzeta S

\right)  exp (f)

=

\left(  \sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\partial | S| f

\partial \bfitzeta S

\right)  exp (f) ,(62)

where \scrQ p = \{ \Phi \in \scrP p, \{ p\} \in \Phi \} is the set of all partitions of Ip that contain the singleton \{ p\} .
Coming back to the moments, we prove (58) by applying (59) to the function K(\bfitzeta ,k, t):

Xp
\bfk (t) =

\partial p exp (Kx(\bfitzeta ,k, t))

\partial \bfitzeta 

\bigm| \bigm| \bigm| 
\bfitzeta =0

=
\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\partial | S| Kx(\bfitzeta ,k, t)

\partial \bfitzeta S
exp (Kx (\bfitzeta ,k, t))

\bigm| \bigm| \bigm| 
\bfitzeta =0

=
\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=X
| S| 
\bfk S

(tS) ,(63)

after noticing that exp (K (0,k, t)) = 1.
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Corollary 1. A direct corollary of Property 3 is that when the input neurons are independent
and driven by intensities \mu k(tk), then the cumulant of order p of the input population x is given
by

(64) \=Xp
\bfk (t) = \=\delta \bfk (t) \mu k1(t1) .

The proof simply consists in identifying the terms in (13) to the cumulants, where k and
t are respectively replaced by kS and tS for each subset S.

Now we examine the general situation of a network with afferent and recurrent connectiv-
ities, corresponding to the combined theorems for moments---see (23) and (41).

Theorem 3 (mappings for cumulants). The cumulants are related by the following map-
pings:

\=\Gamma p
\bfi (t) =

\bigl( 
\bfitgamma p
\bfi \bfk \circledast \=Xp

\bfk 

\bigr) 
(t) ,(65a)

\=Y p,\epsilon =0
\bfi (t) =

\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \Bigl( 
\=\Gamma 
| \v \Phi | 
\bfi \v \Phi 

(t\v \Phi ) +
\=\Lambda 
| \v \Phi | 
\bfi \v \Phi 

(t\v \Phi )
\Bigr) 

,(65b)

\=Y p
\bfi (t) =

\Bigl( \widetilde \bfitepsilon p\bfi \bfj \circledast \=Y p,\epsilon =0
\bfj 

\Bigr) 
(t) .(65c)

Proof of Theorem 3. Equation (65a) simply comes from the linearity of the filtering by \gamma .
Another way to prove it is to decompose the moment in terms of cumulants, as we do now to
demonstrate (65c).

By rewriting the moments Y p
\bfi (t) =

\sum 
\Phi \in \scrP p

\prod 
S\in \Phi Y

| S| ,\epsilon =0
\bfj S

(tS) in (41) using the equivalent

of (58) for the output cumulants, we have\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=Y
| S| 
\bfi S

(tS) =
\Bigl( \widetilde \bfitepsilon p\bfi \bfj \circledast Y p,\epsilon =0

\bfj 

\Bigr) 
(t)

=
\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\Bigl( \widetilde \bfitepsilon | S| \bfi S\bfj S
\circledast \=Y

| S| ,\epsilon =0
\bfj S

\Bigr) 
(tS) .(66)

As before, we identify the terms for each S and \Phi .
In contrast, (65b) is not straightforward and comes from the spiking nature of y driven

by an intensity function \nu \epsilon =0 that possibly has high-order correlations (for example, a Cox
process). Basically, it is the extension of cumulants of smaller orders by delta functions for
all possible partitions for each time variable of the smaller-order cumulant. For simplicity, we
only show the result for \=\Gamma ; note also that the additivity of the cumulant ensures the complete
result. We rewrite (28)---which is the equivalent of (23) in the absence of \lambda ---in terms of
cumulants using (58):

(67)
\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=Y
| S| ,\epsilon =0
\bfi S

(tS) =
\sum 
\Phi \in \scrP p

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \left(  \sum 
\Phi \prime \in \scrP (\v \Phi )

\prod 
S\prime \in \Phi \prime 

\=\Gamma 
| S\prime | 
\bfi S\prime 

(tS\prime )

\right)  .

In (67) cumulants \=\Gamma involve indices from distinct subsets S of the partition \Phi , as they ``com-
bine"" the minima in \v \Phi according to \Phi \prime . We now reorganize the expression to obtain an
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expression similar to the left-hand side, where the terms in the product over S have a generic
expression with indices only in S. The product of generalized delta functions can be moved
inside the sum over \Phi \prime , yielding

(68)
\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=Y
| S| ,\epsilon =0
\bfi S

(tS) =
\sum 
\Phi \in \scrP p

\sum 
\Phi \prime \in \scrP (\v \Phi )

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \Biggl( \prod 
S\prime \in \Phi \prime 

\=\Gamma 
| S\prime | 
\bfi S\prime 

(tS\prime )

\Biggr) 
.

For each pair of partitions \Phi and \Phi \prime , we construct a partition \Psi \in \scrP p, whose subsets T are
the unions of subsets S corresponding to the same S\prime \in \Phi \prime :

(69) T =
\bigcup 
S\in \Phi ,

\v S\in S\prime \in \Phi \prime 

S .

In addition, we define a partition \Psi \prime 
T \in \scrP (T ) for each T \in \Psi that splits T into the original

subsets S \in \Phi :

(70) \Psi \prime 
T =

\bigcup 
S\in T

\{ S\} .

The correspondence between the partitions is represented in Figure 7 for a schematic
example. Using (70) with S = T \prime \in \Psi \prime 

T for the each T , the first product in (68) can be
rewritten as

(71)
\prod 
S\in \Phi 

\=\delta \bfi S (tS) =
\prod 
T\in \Psi 

\prod 
T \prime \in \Psi \prime 

T

\=\delta \bfi T \prime (tT \prime ) .

Because each S\prime \in \Phi \prime = \v \Phi is the subset of minima \v \Psi \prime 
T for the corresponding T =

\bigcup 
S, we

similarly reformulate the second product as

(72)
\prod 

S\prime \in \Phi \prime 

\=\Gamma 
| S\prime | 
\bfi S\prime 

(tS\prime ) =
\prod 
T\in \Psi 

\=\Gamma 
| \v \Psi \prime 

T | 
\bfi \v \Psi \prime 

T

(t\v \Psi \prime 
T
) .

We can thus factorize the two products on the right-hand side of (68) to obtain

(73)

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) \Biggl( \prod 
S\prime \in \Phi \prime 

\=\Gamma 
| S\prime | 
\bfi S\prime 

(tS\prime )

\Biggr) 
=
\prod 
T\in \Psi 

\left(  \prod 
T \prime \in \Psi \prime 

T

\=\delta \bfi \v T \prime (t \v T \prime )

\right)  \=\Gamma 
| \v \Psi \prime 

T | 
\bfi \v \Psi \prime 

T

(t\v \Psi \prime 
T
) .

Finally, the key observation is that each pair \Phi \in \scrP p and \Phi \prime \in \scrP (\v \Phi ) is uniquely associ-
ated with another pair made of a partition \Psi \in \scrP p and its corresponding set of partitions
\{ \Psi \prime 

T \in \scrP (T )\} T\in \Psi :

(74) (\Phi ,\Phi \prime ) \updownarrow (\Psi ,
\bigl\{ 
\Psi \prime 

T

\bigr\} 
T\in \Psi ) .

As a consequence, the double summation over \Phi and \Phi \prime in (68) can be expressed as a sum-
mation over \Psi and over its corresponding subpartitions, namely,

(75)
\sum 
\Phi \in \scrP p

\sum 
\Phi \prime \in \scrP (\v \Phi )

\updownarrow 
\sum 
\Psi \in \scrP p

\sum 
\Psi \prime 

T1
\in \scrP (T1)

\cdot \cdot \cdot 
\sum 

\Psi \prime 
T| \Psi | 

\in \scrP (T| \Psi | )

=
\sum 
\Psi \in \scrP p

\sum 
\Psi \prime 

T\in \scrP (T ),
\forall T\in \Psi 

,
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Ψ

Φ

Φ’
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T
1

Ψ’
T
2

T’
1

T’
2

T’
1

S’
1
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2

Figure 7. One-to-one mapping between partitions. The partition \Psi is constructed from the pair \Phi and \Phi \prime .
To each element of T \in \Psi corresponds a partition \Psi \prime 

T that recovers the original subsets in \Phi . See (69) and (70)
in the main text for the mathematical construction. Here the subsets are indexed as in (75) and the partitions
\Psi \prime 

T are represented using different gray contrasts.

with the explicit enumeration of Tr \in \Psi . With this substitution, (68) can be expressed as

\sum 
\Phi \in \scrP p

\prod 
S\in \Phi 

\=Y
| S| ,\epsilon =0
\bfi S

(tS) =
\sum 
\Psi \in \scrP p

\sum 
\Psi \prime 

T\in \scrP (T ),
\forall T\in \Psi 

\prod 
T\in \Psi 

\left(  \prod 
T \prime \in \Psi \prime 

T

\=\delta \bfi T \prime (tT \prime )

\right)  \=\Gamma 
| \v \Psi \prime 

T | 
\bfi \v \Psi \prime 

T

(t\v \Psi \prime 
T
)

=
\sum 
\Psi \in \scrP p

\prod 
T\in \Psi 

\left(  \sum 
\Psi \prime \in \scrP (T )

\Biggl( \prod 
T \prime \in \Psi \prime 

\=\delta \bfi T \prime (tT \prime )

\Biggr) 
\=\Gamma 
| \v \Psi \prime | 
\bfi \v \Psi \prime 

(t\v \Psi \prime )

\right)  .(76)

Once again, we conclude by identifying the terms for each T and \Psi on the right-hand side
and S and \Phi on the left-hand side of (76).

Note that (65b) for cumulants resembles its counterpart (23) for moments, but in the case
where the neurons are stimulated by both inputs and driving intensities, the corresponding
cumulants are simply summed, whereas moments appear in a product.

4. Discussion. In this paper we analytically computed the statistics of neuronal activity
in a recurrent network---described via moments and then transposed to cumulants---from the
statistics of the input neuronal population. An important contribution of our study is the
description of the propagation of spiking moments in feedforward networks (Theorem 1) and
recurrently connected networks (Theorem 2), which had not been explored before. Theorem 3
established the equivalent mappings for cumulants. Compared to recent studies for cumu-
lants (Jovanovi\'c, Hertz, and Rotter, 2015; Ocker et al., 2017), an important advantage of the
operator viewpoint taken here is that it provides intuition about the spatio-temporal filtering
induced by both afferent and recurrent connectivities. In particular, Figure 5 shows that
the combination of afferent and recurrent connectivities can lead to strong output correlation
structure, hinting at nonlinear effects on the distribution of spikes. This can be explained
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by the recurrent connectivity, as well as the interplay between moment orders (here from
low-order to high-order moments). Another interesting point is that moments do not require
a stationarity assumption to derive their consistency equation, in contrast to covariances in
the original Hawkes formalism.

The main technical challenge comes from the spiking nature of neurons, which forces us to
consider all possible contractions; see (4). For rate-based neurons---still interacting through
spatio-temporal kernels---or equivalently assuming that the population size is very large such
that individual spikes have negligible effects, our results can be expressed in a much simpler
way (see Remark 5). In this case, the output moments can be approximated by a nested
convolution: a first convolution of the input moments with the feedforward kernel followed by
a second convolution with the effective recurrent kernel. Quantifying the deviations from this
approximation for neuronal population of finite size is left for future work.

At the heart of the tractability in this study is the linearity assumption of the Hawkes
process considered here, as the firing probability is proportional to the membrane potential
that simply sums the synaptic inputs. This allows us to calculate exact results that do not rely
on, e.g., the diffusion approximation. However, the linearity assumption obviously imposes
limitations on the scope of the theory presented here. In particular, refractoriness (i.e., the
reduction of spiking probability during the few milliseconds that follow an action potential)
as well as inhibition, which is ubiquitous in the brain, cannot be exactly modeled in this
linear framework. Discrepancies with the theory will of course depend on many factors such
as the shapes and amplitudes of the synaptic kernels (especially for inhibitory connections)
as well as the properties of the filtered inputs and driving intensities---which may interact.
Nonetheless, we have found that our formalism still holds when such mechanisms modeled by
negative connectivity weights are not too strong (Figure 6).

To circumvent those limitations, several studies included various forms of nonlinearities in
the Hawkes process (Br\'emaud and Massouli\'e, 1996; Galves and L\"ocherbach, 2016; Cheval-
lier, 2017; Gao and Zhu, 2018; Ferrari et al., 2018; Raad, Ditlevsen, and L\"ocherbach, 2018).
One can assume that the firing intensity explicitly depends on the time difference up to the
previous spike in order to make the Hawkes process age-dependent (Raad, Ditlevsen, and
L\"ocherbach, 2018). This approach ensures that the stability is independent of the two classi-
cal stability conditions, i.e., (a) the \alpha -Lipschitz condition on the nonlinear intensity function,
and (b) the condition that the integral of the absolute value of the recurrent kernel should
be smaller than 1/\alpha (Br\'emaud and Massouli\'e, 1996). However, the computation of moments
and cumulants in this context is expected to be much harder. Mean-field approximations lead
to analytical results (Toyoizumi, Rad, and Paninski, 2009), but they are only valid in the
limit of weak coupling. Another possibility is to rely on path-integral formulation and the re-
lated Feynman diagram formalism (Shchepanyuk, 1995; Ocker et al., 2017; Chen et al., 2018),
but it brings an additional complexity that requires further analysis to obtain an intuitive
understanding of the combined effect of the feedforward and recurrent kernels in propagat-
ing spiking moments. In that respect, the linear Hawkes process already leads to complex
crossovers between cumulants---as can be seen in (65b)---and many more are expected to ap-
pear for the nonlinear case. Note that gaining insight about this cross-talk between moment
orders is important when investigating a network driven by correlated inputs or by driving
intensities with correlation structure such as Cox processes (Lechnerov\'a, Helisov\'a, and Bene\v s,
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2008; Laier, Prokesova, and Jensen, 2008).
In the context of neuroscience, our results can be applied to the field of synaptic plasticity

under two conditions. First, the output neurons should be in the linear regime, and, second,
the learning rule should have a small learning rate (i.e., learning operates at a much slower time
scale than neuronal dynamics). For activity-dependent models, the expected weight change
can be expressed from the corresponding statistics of the spiking activity (Kempter, Gerstner,
and van Hemmen, 1999; Gilson, Burkitt, and van Hemmen, 2010). Furthermore, since synaptic
plasticity has been demonstrated to depend on higher-order correlations (Pfister and Gerstner,
2006; Clopath et al., 2010), our formalism provides the adequate tools to analytically study
synaptic plasticity in recurrently connected networks, extending previous work that relied on
approximations (Gjorgjieva et al., 2011).

Efforts have been made to fit univariate Hawkes processes to empirical time series using
Bayesian estimation based on the likelihood (Ozaki, 1979; Truccolo, 2016; Laub, Taimre, and
Pollett, 2015; Fujita et al., 2018), implementing relative spike count between neurons (Lambert
et al., 2018), or relying on average second-order statistics (Da Fonseca and Zaatour, 2014;
Bacry and Muzy, 2016). Refinements have also been explored in the case of sparse observations
of the network activity over time (Le, 2018). It remains to be explored whether high-order
moments can be useful for parameter estimation.

Finally, the difference between the abstract space and time in the spiking activity---namely,
the coordinates of xk(t) and yi(t)---is simply their discrete and continuous natures. The
moments tensors could also be defined with continuous space-time variables, adapting (20)
with a spatial integral in line with previous work (M{\e}ller and Torrisi, 2007). Because our
proof relies on linear algebra, it can easily be extended to this new context. The equivalence
of the roles of space and time can be seen in the ``generalized spatio-temporal delta function""
in Definition 3 and in the ``matrix convolution"" in Definition 2. Analogies with other processes
have also been made, such as with the integer-value autoregressive process (Kirchner, 2016).
It remains to be explored whether such formal mappings between processes provide intuition
to interpret these dynamic systems.

Appendix A.

Definition 6 (moment symmetrical expansion operator). Let us consider two tensors of order
q and r, say T q

\bfj \prime (t
\prime ) with coordinates j\prime = (j\prime 1, . . . , j

\prime 
q) and t\prime = (t\prime 1, . . . , t

\prime 
q) as well as U r

\bfj \prime \prime (t
\prime \prime )

with coordinates j\prime \prime = (j\prime \prime 1 , . . . , j
\prime \prime 
q ) and t\prime \prime = (t\prime \prime 1, . . . , t

\prime \prime 
r). For any given p \geq q + r, we define

the following tensor operation, which constructs a moment of order p with i = (i1, . . . , ip) and
t = (t1, . . . , tp) from the tensors T and U of smaller orders q and r:

(77) \scrA p[T q, U r]\bfi (t) =
\sum 

A\subset Ip,B\subset Ip
| A| =q,| B| =r

A\cap B=\emptyset 

\sum 
\Phi \in \scrP p
\v \Phi =A\cup B

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) 
T q
\bfi A
(tA) U

r
\bfi B
(tB) .

Recall that \v \Phi = \{ \v S, S \in \Phi \} is the set of minima for the groups in the partition \Phi . By
convention, the 0-order tensors are valued 1 when A or B = \emptyset .

Equation (77) uses contractions to augment the order of the combinations of tensors T q

and U r from q+r to p with all possible symmetries. In particular, if T q and U r are symmetric
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tensors (see Remark 2) with respect to all their own dimensions, the output of \scrA p is symmetric
as well.

Here we reformulate the result of Theorem 1 to group moments of the same order together,
using the operator defined in (77). From (26), we swap the summation terms of the partitions
\Phi and the decomposition of \v \Phi in two subsets.

(78) Y p,\epsilon =0
\bfi (t) =

\sum 
A\subset Ip,B\subset Ip
A\cap B=\emptyset 

\sum 
\Phi \in \scrP p
\v \Phi =A\cup B

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) 
\Gamma 
| A| 
\bfi A

(tA) \Lambda 
| B| 
\bfi B

(tB) .

The important point here is to understand that the construction of \v \Phi from A and B exactly
spans the whole set of partitions \scrP p. Note also that A and B can be empty sets. Then we
simply group the subsets A of the same size q, and similarly B of the same size r:

(79) Y p,\epsilon =0
\bfi (t) =

\sum 
0\leq q+r\leq p

\sum 
A\subset Ip,B\subset Ip
| A| =q,| B| =r

A\cap B=\emptyset 

\sum 
\Phi \in \scrP p
\v \Phi =A\cup B

\Biggl( \prod 
S\in \Phi 

\=\delta \bfi S (tS)

\Biggr) 
\Gamma q
\bfi A
(tA) \Lambda 

r
\bfi B
(tB) ,

which gives a reformulation of (23) using the operator \scrA p in (77).
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