
Sequence learning with hidden units
in spiking neural networks

Johanni Brea, Walter Senn and Jean-Pascal Pfister
Department of Physiology

University of Bern
Bühlplatz 5

CH-3012 Bern, Switzerland
{brea, senn, pfister}@pyl.unibe.ch

Abstract

We consider a statistical framework in which recurrent networks of spiking neu-
rons learn to generate spatio-temporal spike patterns. Given biologically realistic
stochastic neuronal dynamics we derive a tractable learning rule for the synaptic
weights towards hidden and visible neurons that leads to optimal recall of the train-
ing sequences. We show that learning synaptic weights towards hidden neurons
significantly improves the storing capacity of the network.Furthermore, we de-
rive an approximate online learning rule and show that our learning rule is consis-
tent with Spike-Timing Dependent Plasticity in that if a presynaptic spike shortly
precedes a postynaptic spike, potentiation is induced and otherwise depression is
elicited.

1 Introduction

Learning to produce temporal sequences is a general problemthat the brain needs to solve. Move-
ments, songs or speech, all require the generation of specific spatio-temporal patterns of neural
activity that have to be learned. Early attempts to model sequence learning used a simple asym-
metric Hebbian learning rule [10, 20, 6] and succeeded to store sequences of random patterns, but
perform poorly as soon as there are temporal correlations between the patterns [3].

Later work on pattern storage or sequence learning recognized the need for matching the storage
rule with the recall dynamics [2, 18, 12] and derived the optimal storage rule for a given recall
dynamics [2, 18] or an optimal recall dynamics for a given storage rule [12], but didn’t consider
hidden neurons and therefore restricted the class of possible patterns to be learned. Other studies
[14] included a reservoir of hidden neurons but assumed weights towards the hidden neurons to be
fixed. Finally, Boltzmann machines [1] - which learn to produce a given distribution of patterns with
visible and hidden neurons - applied to sequence learning [9, 22, 21] are trained with Contrastive
Divergence [8] and either an approximation that neglects the influence of the future or use a non-
local and non-causal learning rule.

Here we start by defining a stochastic neuronal dynamics - that can be arbitrarily complicated (e.g.
with non-Markovian dependencies). This stochastic dynamics defines the overall probability dis-
tribution which is parametrized by the synaptic weights. The goal of learning is to adapt synaptic
weights such that the model distribution approximates as good as possible the target distribution
of temporal sequences. This can be seen as the extension of the maximum likelihood approach
of Barber [2] where we add stochastic hidden neurons with plastic weights. In order to learn the
weights, we implement a variant of the Expectation-Maximization (EM) algorithm [5] where we
use importance sampling in the expectation step in a way thatmakes the sampling procedure easy.

1

A B

vt−1

ht−1

vt

ht

vt−1

ht−1

vt

ht

stochastic
visible
neurons

stochastic
hidden
neurons

Figure 1: Graphical representation of the conditional dependencies of the joint distribution over
visible and hidden sequences.A Graphical model used for the derivation of the learning rulein
section 2 and the example in section 4.B Markovian model used in the example with binary neurons
in section 3.

The resulting learning rule is local (but modulated by a global factor), causal and biologically rele-
vant in the sense that it shares important features with Spike-Timing Dependent Plasticity (STDP).
We also derive an online version of the learning rule and shownumerically that it performs almost
equally well as the exact batch learning rule.

2 Learning a distribution of sequences

Let us consider temporal sequencesv = {vt,i|t = 0 . . . T, i = 1 . . .Nv} of Nv visible neurons
over the interval[0, T]. We will use the notationvt = {vt,i|i = 1 . . .Nv} andvt1:t2 = {vt,i|t =
t1 . . . t2, i = 1 . . .Nv} to denote parts of the sequence. Note thatv = v0:T denotes the whole
sequence. Those visible sequencesv are drawn i.i.d. from a target distributionP ∗(v) that must
be learned by a model which consists ofNv visible neurons andNh hidden neurons. The model
distribution over those visible sequences is denoted byPθ(v) =

∑
h Pθ(v, h) whereθ denotes the

model parameters,h = {ht,i|t = 0 . . . T, i = 1 . . .Nh} the hidden temporal sequence andPθ(v, h)
the joint distribution over the visible and the hidden sequences. The natural way to quantify the
mismatch between the target distributionP ∗(v) and the model distributionPθ(v) is given by the
Kullback-Leibler divergence:

DKL(P
∗(v)||Pθ(v)) =

∑

v

P ∗(v) log
P ∗(v)

Pθ(v)
. (1)

If the joint model distributionPθ(v, h) is differentiable with respect to the model parametersθ, then
the sequence learning problem can be phrased as gradient descent on the KL divergence in Eq. (1):

∆θ = η

〈
∂ logPθ(v, h)

∂θ

〉

Pθ(h|v)P∗(v)

, (2)

whereη is the learning rate and we used the fact that∂
∂θ logPθ(v) = 1

Pθ(v)
∂
∂θ

∑
h Pθ(v, h) =

∑
h Pθ(h|v)

∂
∂θ logPθ(v, h). Eq. (2) can be seen as a variant of the EM algorithm [5, 16, 3] where

the expectation〈·〉Pθ(h|v)P∗(v) corresponds to the E step and the gradient oflogPθ(v, h) is related

to the M step1.

Instead of calculating analytically the true expectation in Eq. (2), it is possible to approximate it
by sampling the visible sequencesv from the target distributionP ∗(v) and the hidden sequences
from the posterior distributionPθ(h|v) given the visible ones. Note that the posterior distribution
Pθ(h|v) could be hard to sample from. Indeed, at a timet the posterior distribution overht does not
only depend on the past visible activity but also on the future visible activity, since it is conditioned
on the whole visible activityv0:T from time step 0 toT . This renders a true challenge for on-
line algorithms. In the case of Hidden Markov Model training, the forward-backward algorithm

1Strictly speaking the M step of the EM algorithm directly calculates the solutionθnew for which
∂

∂θ
logPθ(v, h) = 0 whereas in Eq. (2) there is only one step done in the directionof the gradient.

2

[4, 19] combines information from the past (by forward filtering) and from the future (by backward
smoothing) to calculatePθ(h|v).

If the statistical model does not have the Markovian property, the problem of calculatingPθ(h|v)
(or sampling from it) becomes even harder. Here, we propose an alternative solution that does not
require to sample fromPθ(h|v) and does not require the Markovian assumption (see [11, 17] for
other approaches on samplingPθ(h|v)). We exploit that in all neuronal network models of interest,
neuronal firing at any time point is conditionally independent given the past activity of the network.
Using the chain rule this means that we can write the joint distributionPθ(v, h) (see Fig. 1A) as

Pθ(v, h) =

(
Pθ(v0)

T∏

t=1

Nv∏

i=1

Pθ(vt,i|v0:t−1, h0:t−1)

)

︸ ︷︷ ︸
Rθ(v|h)

(
Pθ(h0)

T∏

t=1

Nh∏

i=1

Pθ(ht,i|v0:t−1, h0:t−1)

)

︸ ︷︷ ︸
Qθ(h|v)

,

(3)
whereRθ(v|h) is easy to calculate (see below) andQθ(h|v) is easy to sample from. The sampling
can be accomplished by clamping the visible neurons to a target sequencev and let the hidden
dynamics run, i.e. at timet, ht is sampled fromPθ(ht|v0:t−1h0:t−1). 2 From Eq. (3), the posterior
distributionPθ(h|v) can be written as

Pθ(h|v) =
Rθ(v|h)Qθ(h|v)

Pθ(v)
, (4)

where the marginal distribution over the visible sequencesv can be also expressed asPθ(v) =
〈Rθ(v|h)〉Qθ(h|v)

. As a consequence, by using Eq. (4), the learning rule in Eq. (2) can be rewritten
as

∆θ =
∑

v,h

P ∗(v)Pθ(h|v)
∂ logPθ(v, h)

∂θ
=
∑

v,h

P ∗(v)Qθ(h|v)
Rθ(v|h)

Pθ(v)

∂ logPθ(v, h)

∂θ

= η

〈
Rθ(v|h)

〈Rθ(v|h′)〉Qθ(h′|v)

∂ logPθ(v, h)

∂θ

〉

Qθ(h|v)P∗(v)

. (5)

Instead of calculating the true expectation, Eq. (5) can be evaluated by usingN samples (see algo-
rithm 1) where the factorγθ(v, h) := Rθ(v|h)/ 〈Rθ(v|h

′)〉Qθ(h′|v) acts as the importance weight
[15]. Note that in the absence of hidden neurons, this factorγθ(v, h) is equal to one and the maxi-
mum likelihood learning rule [2, 18] is recovered.

2Note that for other conditional dependencies it might be reasonable to splitPθ(h|v) differently. For
example in models with the structure of Hidden Markov Modelsone could make use of the fact that
Pθ(h|v) =

∏
T−1
t=0 Pθ(ht|v0:t, ht+1) =

∏
T−1
t=0

Pθ(ht+1|ht)

Pθ(ht+1|v0:t)
Pθ(ht|v0:t) and take the product of filtering

distributionsQθ(h|v) =
∏

T−1
t=0 Pθ(ht|v0:t) to sample from and use the importance weightsRθ(v, h) =

∏
T−1
t=0

Pθ(ht+1|ht)

Pθ(ht+1|v0:t)
. Following the reasoning in the main text one finds an alternative to the forward-backward

algorithm [4, 19] that might be interesting to investigate further.

Algorithm 1 Sequence learning (batch mode)

Set an initialθ
while θ not convergeddo
v ∼ P ∗(v)
α(v) = 0, Pθ(v) = 0
for i = 1 . . .N do
h ∼ Qθ(h|v)

α(v)← α(v) +Rθ(v|h)
∂ logPθ(v,h)

∂θ
Pθ(v)← Pθ(v) +Rθ(v|h)

end for
θ ← θ + η α(v)

Pθ(v)

end while
return θ

3

A B C

10 20 30

10

20

30

time step

u
n

it
n

u
m

b
e

r

10 20 30

time step

10 20 30

time step

D E F

10 20 30

20

40

60

time step

u
n

it
n

u
m

b
e

r

10 20 30

time step

10 20 30

time step

G

0 7500 15 000
0.5

0.6

0.7

0.8

0.9

1.

learning step

p
e

rf
o

rm
a

n
ce

H I J

102030

10
20
30

time step

u
n

it
n

u
m

b
e

r

10 20 30

time step

10 20 30

10
20
30
40

time step

Figure 2: Learning a non-Markoviansequence of temporally correlated and linearly dependent states
with different learning rules.A The target distribution contained only this training pattern for 30
visible neurons and 30 time steps.B-F, H-J Overlay of 20 recalls after learning with 15 000 training
pattern presentations,B with only visible neurons and a simple asymmetric Hebb rule (see main
text) C only visible neurons and learning rule Eq. (5)D static weights towards 30 hidden neurons
(Reservoir Computing)E learning rule Eq. (5),F online approximation Eq. (14).G Learning curves
for the training pattern in A for only visible neurons (blackline), static weights towards hidden (blue
line), online learning approximation (purple line) exact learning rule (red line). The performance
was measured in one minus average Hamming distance per neuron per time step (see main text).
H A training pattern that exhibits a gap of 5 time-steps.I Recall with a network of 30 visible and
10 hidden neurons without learning the weights towards hidden neurons.J Recall after training the
same network with learning rule Eq. (5).

3 Binary neurons

In order to illustrate the learning rule given by Eq. (5), letus consider sequences of binary pat-
terns. Letx denote the activity of the visible and hidden neurons, i.e.x = (v, h). Since the
individual neurons are binaryxt,i ∈ {−1, 1}, their distribution is given byPθ(xt,i|x0:t−1) =

(ρt,iδt)
(1+xt,i)/2(1 − ρt,iδt)

(1−xt,i)/2, where the firing rateρt,i of neuroni at time t is given by
a monotonically increasing (and non-linear) functiong of its membrane potentialut,i, i.e.

ρt,i = g(ut,i) with ut,i =
∑

j

wijxt−1,j . (6)

Note that these assumptions lead to Markovian neuronal dynamics i.e. Pθ(xt,i|x0:t−1) =
Pθ(xt,i|xt−1) (see Fig. 1B). Further calculations will be slightly simplified, if we assume that the
non-linear functiong is constraint by the following differential equationdg(u)/du = βg(u)(1 −
g(u)δt). Note that in the limit ofδt→ 0, this function is an exponential, i.e.g(u) = g0 exp(βu) and

for finite δt, it is a sigmoidal and takes the formg(u) = δt−1
(
1 +

(
(g0δt)

−1 − 1
)
exp(−βu)

)−1
,

where we constrained the solutions such thatg(0) = g0 in order to be consistent with the case where
δt→ 0.

For the distribution over the initial conditionsPθ(v0) andPθ(h0) we choose delta distributions such
thatv0 is equal to the first state of the training sequence andh0 is an arbitrary but fixed vector of
binary values. If we assume that the weightswij are the only adaptable parameters in this model,

4

A B

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1.0

number of hidden units

p
e

rf
o

rm
a

n
ce

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1.0

sequence length

p
e

rf
o

rm
a

n
ce

Figure 3: Adding trainable hidden neurons leads to much better recall performance than having static
hidden neurons or no hidden neurons at all.A Comparison of the performance after 20000 learning
cycles between static (blue curve) and dynamic weights (redcurve) towards hidden neurons for a
network with 30 visible and different numbers of hidden neurons in a training task with a uncorre-
lated random pattern of length 60 time steps. ForB we generated random, uncorrelated sequences of
different length and compared the performance after 20000 learning cycles for only visible neurons
(black curve), static weights towards hidden (blue curve) and dynamic weights towards hidden (red
curve).

we have

∂ logPw(xt,i|x0:t−1)

∂wij
=

1

2

(
(1 + xt,i)

g′(ut,i)

g(ut,i)
− (1− xt,i)

g′(ut,i)δt

1− g(ut,i)δt

)
∂ut,i

∂wij
. (7)

With the above assumption ong(u) and Eq. (3) and (6) we find

∂ logPw(x)

∂wij
=

β

2

T∑

t=1

(xt,i − 〈xt,i〉Pθ(xt,i|xt−1)
)xt−1,j , (8)

where〈xt,i〉Pθ(xt,i|xt−1)
= g(ut,i)δt − (1 − g(ut,i)δt) and the indicesi andj run over all visible

and hidden neurons. The factorRw(v|h) can be expressed as

Rw(v|h) = exp

(
1

2

T∑

t=0

Nv∑

i=1

(1 + vt,i) log(ρt,iδt) + (1− vt,i) log(1− ρt,iδt)

)
. (9)

Let us now consider a simple case (Fig. 2) where the distribution over sequences is a delta distribu-
tion P ∗(v) = δ(v − v∗) around a single patternv∗ (Fig. 2A) which is made of a set of temporally
correlated and linearly dependent states{v∗t }

T
t=0, i.e. a non-Markovian pattern, thus making it a dif-

ficult pattern to learn with a simple asymmetric Hebb rule∆wij ∝
∑T

t=0 v
∗
t+1,iv

∗
t,j (Fig. 2B) or only

visible neurons (Fig. 2C), which are both Markovian learning rules. The performance was measured
by one minus the Hamming distance per visible neuron and timestep1−(TNv)

−1
∑

t,i |vt,i−v
∗
t,i|/2

between target pattern and recall pattern averaged over 100runs. Adding hidden neurons without
learning the weights towards hidden neurons is similar to the idea used in the framework of Reser-
voir Computing (for a review see [13]): the visible states feed a fixed reservoir of neurons that
returns a non-linear transformation of the input. Only the readout from hidden to visible neurons
and in our case the recurrent connections in the visible layer are trained. To assure a sensible distri-
bution of weights towards hidden units, we used the weights that were obtained after learning with
Eq. (5) and reshuffled them. Obviously, without training thereservoir the performance is always
worse compared to a system with an equal number of hidden neurons but dynamic weights (Fig. 2E
and 2F). With only a few hidden neurons our rule is also capable to learn patterns where the visi-
ble neurons are silent during a few time-steps. The trainingpattern in Fig. 2H exhibits a gap of 5
time steps. After learning the weights towards 10 hidden neurons with learning rule Eq. (5) recall
performance is nearly perfect (see Fig. 2J). With only visible neurons (not shown in Fig. 2) or static
weights towards hidden neurons the time gap was not learned (see Fig. 2I).

5

-40 -20 0 20 40

0

tpost-tpre @msD

D
w
@a

rb
itr

a
ry

u
n

its
D

Figure 4: The learning rule Eq. (11) is compatible with Spike-Timing Dependent Plasticity (STDP):
the weight gets potentiated if a presynaptic spike is followed by a postsynaptic spike and depressed
otherwise. The time course of the postsynaptic potential and the refractory kernel is given in the
text.

In Fig. 3 we used again delta target distributionsP ∗(v) = δ(v − v∗) with random uncorrelated
patternsv∗ of different length. Each model was trained with 20000 pattern presentations. For a
pattern of length2Nv = 60 onlyNv/2 = 15 trainable hidden neurons are sufficient to reach perfect
recall (see Fig. 3A). This is in clear contrast to the case of static hidden weights. Again the static
weights were obtained by reshuffling those that we obtained after learning with Eq. (5). Fig. 3B
compares the capacity of our learning rule withNh = Nv = 30 hidden neurons to the case of
no hidden neuron or static weights towards hidden neurons. Without learning the weights towards
hidden neurons the performance drops to almost chance levelfor sequences of 45 or more time
steps, whereas with our learning rule this decrease of performance occurs only at sequences of 100
or more time steps.

4 Limit to Continuous Time

Starting from the neurons in the last section we show that in the limit to continuous time we can
implement the sequence learning task with stochastic spiking neurons [7].

First note that the state of a neuron at timet in the model described in the previous section is
fully defined byut,i :=

∑
j wijxt−1,j (see Eq. (6)) and its spiking activityxt,i. The weighted

sum
∑

j wijxt−1,j is the response of neuroni to the spikes of its presynaptic neurons and its own
spikes. The terms in this sum depend on the previous time steponly. In a more realistic model the
postsynaptic neuron feels the influence of presynaptic spikes through a perturbation of the membrane
potential on the order of a few milliseconds, which in the limit to continuous time clearly cannot be
modeled by a one-time step response. For a more realistic model we replaceut,i in Eq. (6) by

ut,i =

∞∑

s=1

κsxt−s,i

︸ ︷︷ ︸
=:xκ

t,i

+
∑

j 6=i

wij

∞∑

s=1

ǫsxt−s,j

︸ ︷︷ ︸
=:xǫ

t,j

, (10)

wherext−s,i ∈ {0, 1}. The kernelǫ models the time-course of the response to a presynaptic spike
andκ the refractoriness. Our model holds for any choices ofǫ andκ, including for example a hard
refractory period where the neuron is forced not to spike.

In order to take the limitδt → 0 in Eq. (9) we note that we can scaleRw(v|h) without changing
the learning rule Eq. (5), since there only the ratioRθ(v|h)/ 〈Rθ(v|h

′)〉Qθ(h′|v) enters. We use the

scalingRw(v|h) → R̃w(v|h) := (g0δt)
−SvRw(v|h), whereSv denotes the total number of spikes

in the visible sequencev, i.e. Sv =
∑T

t=0

∑Nv

i=1 vt,i. Note that for(0, 1)-units the expectation in
Eq. (8) becomes〈xt,i〉Pθ(xt,i|xt−1)

= g(ut,i)δt = ρt,iδt . Now we take the limitδt → 0 in Eq. (8)

6

and (9) and find

∂ logPw(x)

∂wij
=

∫ T

0

dt β(xi(t)− ρi(t))x
ǫ
j(t) (11)

R̃w(v|h) = exp

(∫ T

0

dt

Nv∑

i=1

βvi(t)ui(t)− ρi(t)

)
, (12)

where the training pattern runs from time 0 toT , xi(t) =
∑

t
(f)
i

δ(t − t
(f)
i) is the sum of delta

spikes of neuroni at timest(f)i , xǫ
j(t) =

∫
ds ǫ(s)xj(t− s) (and similarlyxκ

i (t)) is the convolution
of presynaptic spike trains with the response kernelǫ(t). With neuroni’s response to past spiking
activity ui(t) = xκ

i (t) +
∑

j 6=i wijx
ǫ
j(t) and the escape rate functionρi(t) = g0 exp (βui(t)) we

recovered the defining equations of a simplified stochastic spike response model [7].

In Fig. 4 we display the weight change after forcing two neurons to fire with a fixed time lag. For the
figure we used the kernelsǫs ∝ exp(−s/τm)−exp(−s/τs) andκs ∝ − exp(−s/τm) with τm = 10
ms andτs = 2 ms. Our learning rule is consistent with STDP in the sense that a presynaptic spike
followed by a postsynaptic spike leads to potentiation and to depression otherwise. Note that this
result was also found in [18].

5 Approximate online version

Without hidden neurons the learning rule found by using Eq. (11) is straightforward to implement
in an online way where the parameters are updated at every moment in time according toẇij ∝
(xi(t) − ρi(t))x

ǫ
j(t) instead of waiting with the update until a training batch finished. Finding

an online version of the learning algorithm for networks with hidden neurons turns out to be a
challenge, since we need to know the whole sequencesv andh in order to evaluate the importance
factorRθ(v|h)/〈Rθ(v|h

′)〉Qθ(h′|v). Here we propose to use in each time step an approximation
of the importance factor based on the network dynamics during the preceding period of typical
sequence length and multiply it by the low-pass filtered change of parameters. We write this section
with xi(t) ∈ {0, 1}, but similar expressions are easily found forxi(t) ∈ {−1, 1}.

Algorithm 2 Sequence learning (online mode)

Set an initialwij , eij , a, r̄, t
while wij not convergeddo

if t mod NT == 0 then
v ∼ P ∗(v)

end if
s = t mod T
if s < τ then
h(s) ∼ P (h(s)) elseh(s) ∼ Pw(h(s)|past spiking activity)

end if
x(s) = (v(s), h(s))
eij ← (1 − δt

T)eij + β(xi(s)− ρi(s))x
ǫ
j(s)

a← (1− δt
T)a+

∑Nv

i=1 βvi(s)ui(s)− ρi(s)

r̄ ← (1− δt
NT)r̄ + exp(a)

wij ← wij + η exp(a)
r̄ eij

t← t+ δt
end while
return wij

In Eq. (13a) and (13b) we summarize how to use low-pass filtersto approximate the integrals in
Eq. (11) and Eq. (12). The time constant of the low-pass filteris chosen to match the sequence length
T . To find an online estimate of〈Rθ(v, h

′)〉Qθ(h′|v) we assume that a training patternv ∼ P ∗(v)

is presented a few times in a row and after timeNT , with N ∈ N, N ≫ 1, a new training pattern
is picked from the training distribution. Under this assumption we can replace the average over

7

hidden sequences by a low-pass filter ofr with time constantNT , see Eq. (13c). At the beginning
of each pattern presentation - i.e. during the time interval[0, τ), with τ on the order of the kernel
time constantτm - the hidden activityh(s) is drawn from a given distributionP (h(s)).

ėij(t) = −
1

T
eij(t) + β(xi(t)− ρi(t))x

ǫ
j(t) eij(T) ≈

∂ logPw(x)

∂wij
(13a)

ȧ(t) = −
1

T
a(t) +

Nv∑

i=1

βvi(t)ui(t)− ρi(t) exp(a(T)) ≈ Rw(v|h) (13b)

NT ˙̄r(t) = −r̄(t) + r(t), r(t) := exp(a(t)) r̄(NT) ≈ 〈Rθ(v, h
′)〉Qθ(h′|v) (13c)

Finally we learn the model parameters in each time step according to

ẇij(t) = η
r(t)

r̄(t)
eij(t) . (14)

This online algorithm is certainly a rough approximation ofthe batch algorithm. Nevertheless, when
applied to the challenging example (Fig. 2A) in section 3, the performance of the online rule is close
to the one of the batch rule (Fig. 2F, G).

6 Discussion

Learning long and temporally correlated sequences with neural networks is a difficult task. In this
paper we suggested a statistical model with hidden neurons and derived a learning rule that leads to
optimal recall of the learned sequences given the neuronal dynamics. The learning rule is derived by
minimizing the Kullback-Leibler divergence from trainingdistribution to model distribution with a
variant of the EM-algorithm, where we use importance sampling to draw hidden sequences given the
visible training sequence. Choosing an appropriate distribution in the importance sampling step we
are able to circumvent inference which usually makes the training of non-Markovian models hard.
The resulting learning algorithm consists of a local term modulated by a global factor. We showed
that it is ready to be implemented with biologically realistic neurons and that an approximate online
version exists.

Our approach follows the ideas outlined in [2], where sequence learning was considered with visible
neurons. Here we extended this model by adding stochastic hidden neurons that help to perform well
with sequences of linearly depend states - including non-Markovian sequences - or long sequences.
As in [18] we look at the limit of continuous time and find that the learning rule is consistent with
Spike-Timing Dependent Plasticity. In contrast to Reservoir Computing [13] we train the weights
towards hidden neurons which clearly helps to improve performance. Our learning rule does not
need a “wake” and a “sleep” phase as we know it from Boltzmann machines [1, 8].

Viewed in a different light our learning algorithm has a niceinterpretation: as in reinforcement
learning, the hidden neurons explore different sequences,where each trial leads to a global reward
signal that modulates the weight change. However, in contrast to common reinforcement learning
the reward is not provided by an external teacher but dependssolely on the internal dynamics and
the visible neurons do not explore but are clamped to the training sequence.

To make our model even more biologically relevant, future work should aim for a biological im-
plementation of the global importance factor that depends on the spike timing and the membrane
potential of all the visible neurons (see Eq. (9)). It would also be interesting to study online ap-
proximations of the learning algorithm in more detail or itsapplication to models with the Hidden
Markov structure.

Acknowledgments

The authors thank Robert Urbanczik for helpful discussions. This work was supported by the Swiss
National Science Foundation (SNF), grant 31-133094, and a grant from the Swiss SystemsX.ch
initiative (Neurochoice, evaluated by the SNF).

8

References

[1] D. Ackley and G. E. Hinton. A learning algorithm for boltzmann machines.Cognitive Science, 9(1):147–
169, 1985.

[2] D. Barber. Learning in spiking neural assemblies.Advances in Neural Information Processing Systems,
15, 2003.

[3] D. Barber.Bayesian Reasoning and Machine Learning. Cambridge University Press, 2011. In press.

[4] L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical analysis
of probabilistic functions of Markov chains.The Annals of Mathematical Statistics, 41(1):164–171, 1970.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38, 1977.

[6] A. Düring, A. Coolen, and D. Sherrington. Phase diagramand storage capacity of sequence processing
neural networks.Journal of Physics A: Mathematical and General, 31:8607, 1998.

[7] W. Gerstner and W. M. Kistler.Spiking neuron models: single neurons, populations, plasticity. Cambridge
University Press, 2002.

[8] G. E. Hinton. Training products of experts by minimizingcontrastive divergence.Neural Computation,
14(8):1771–800, 2002.

[9] G. E. Hinton and A. Brown. Spiking boltzmann machines.Advances in Neural Information Processing
Systems, 12, 2000.

[10] J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences of the United States of America, 79(8):2554, 1982.

[11] P. Latham and J. W. Pillow. Neural characterization in partially observed populations of spiking neurons.
Advances in Neural Information Processing Systems, 20:1161–1168, 2008.

[12] M. Lengyel, J. Kwag, O. Paulsen, and P. Dayan. Matching storage and recall: hippocampal spike timing-
dependent plasticity and phase response curves.Nature Neuroscience, 8(12):1677–83, 2005.

[13] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural network training.
Computer Science Review, 3(3):127–149, 2009.

[14] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: a new framework
for neural computation based on perturbations.Neural Computation, 14(11):2531–60, 2002.

[15] D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge University Press,
2002.

[16] G. McLachlan and T. Krishnan.The EM Algorithm and Extensions. John Wiley and Sons, 1997.

[17] Y. Mishchenko and L. Paninski. Efficient methods for sampling spike trains in networks of coupled
neurons.The Annals of Applied Statistics, 5(3):1893–1919, 2011.

[18] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner.Optimal spike-timing-dependent plasticity for
precise action potential firing in supervised learning.Neural Computation, 18(6):1318–1348, 2006.

[19] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.Pro-
ceedings of the IEEE, 77(2):257–86, 1989.

[20] H. Sompolinsky and I. Kanter. Temporal association in asymmetric neural networks.Physical Review
Letters, 57(22):2861–64, 1986.

[21] I. Sutskever, G. E. Hinton, and G. Taylor. The RecurrentTemporal Restricted Boltzmann Machine.
Advances in Neural Information Processing Systems, 21:1601–08, 2009.

[22] G. Taylor, G. E. Hinton, and S. Roweis. Modeling human motion using binary latent variables.Advances
in Neural Information Processing Systems, 19:1345–52, 2007.

9

