Sequence learning with hidden units
in spiking neural networks

Johanni Brea, Walter Senn and Jean-Pascal Pfister
Department of Physiology
University of Bern
Buhlplatz 5
CH-3012 Bern, Switzerland
{brea, senn, pfister}@yl.unibe.ch

Abstract

We consider a statistical framework in which recurrent meks of spiking neu-

rons learn to generate spatio-temporal spike patternsrGiiologically realistic

stochastic neuronal dynamics we derive a tractable legmuite for the synaptic
weights towards hidden and visible neurons that leads imaptecall of the train-

ing sequences. We show that learning synaptic weights tsagidden neurons
significantly improves the storing capacity of the netwoFkrthermore, we de-
rive an approximate online learning rule and show that camlieg rule is consis-
tent with Spike-Timing Dependent Plasticity in that if a gyaaptic spike shortly
precedes a postynaptic spike, potentiation is induced #retwise depression is
elicited.

1 Introduction

Learning to produce temporal sequences is a general prahknthe brain needs to solve. Move-

ments, songs or speech, all require the generation of spagifitio-temporal patterns of neural

activity that have to be learned. Early attempts to modelisege learning used a simple asym-
metric Hebbian learning rule [10, 20, 6] and succeeded t@ stequences of random patterns, but
perform poorly as soon as there are temporal correlatioredes the patterns [3].

Later work on pattern storage or sequence learning recedriiee need for matching the storage
rule with the recall dynamics [2, 18, 12] and derived the mpli storage rule for a given recall
dynamics [2, 18] or an optimal recall dynamics for a giverrage rule [12], but didn’t consider
hidden neurons and therefore restricted the class of gegsdtiterns to be learned. Other studies
[14] included a reservoir of hidden neurons but assumedhtgigwards the hidden neurons to be
fixed. Finally, Boltzmann machines [1] - which learn to proda given distribution of patterns with
visible and hidden neurons - applied to sequence learning921] are trained with Contrastive
Divergence [8] and either an approximation that negleastfluence of the future or use a non-
local and non-causal learning rule.

Here we start by defining a stochastic neuronal dynamics -ctivabe arbitrarily complicated (e.g.
with non-Markovian dependencies). This stochastic dycardefines the overall probability dis-
tribution which is parametrized by the synaptic weightse Doal of learning is to adapt synaptic
weights such that the model distribution approximates axiges possible the target distribution
of temporal sequences. This can be seen as the extensior ofakimum likelihood approach
of Barber [2] where we add stochastic hidden neurons witktiglaveights. In order to learn the
weights, we implement a variant of the Expectation-Maxatian (EM) algorithm [5] where we

use importance sampling in the expectation step in a waynthies the sampling procedure easy.

stochastic

hidden — —>
neurons

stochastic

visible —>—>
neurons

Figure 1. Graphical representation of the conditional dejeacies of the joint distribution over
visible and hidden sequence#. Graphical model used for the derivation of the learning rale
section 2 and the example in sectiorB4Markovian model used in the example with binary neurons
in section 3.

The resulting learning rule is local (but modulated by a gldhctor), causal and biologically rele-
vant in the sense that it shares important features witheSpikiing Dependent Plasticity (STDP).
We also derive an online version of the learning rule and shomerically that it performs almost
equally well as the exact batch learning rule.

2 Learning a distribution of sequences

Let us consider temporal sequenees= {v;;|t = 0...T,i = 1...N,} of N, visible neurons
over the interval0, 7']. We will use the notatiomw;, = {v,;|i = 1...N,} andv;, ., = {vii|t =
t1...t2,1 = 1...N,} to denote parts of the sequence. Note that vy.; denotes the whole
sequence. Those visible sequencemre drawn i.i.d. from a target distributioR*(v) that must
be learned by a model which consists/gf visible neurons andvy, hidden neurons. The model
distribution over those visible sequences is denote®fy) = >, FPs(v, h) wheref denotes the
model parameters, = {h; ;|t =0...7T,i = 1... Ny} the hidden temporal sequence aRdv, h)
the joint distribution over the visible and the hidden sewes. The natural way to quantify the
mismatch between the target distributiéYi(v) and the model distributio®y (v) is given by the

Kullback-Leibler divergence:
P
D (P (W) [Pa(v)) = 3 P (o) log 22

P@ (’U) ’

1)

If the joint model distributionPy (v, k) is differentiable with respect to the model parametethen
the sequence learning problem can be phrased as gradieanties the KL divergence in Eq. (1):

Olog Py(v, h
A9=n<—i%£i—l> , @
Py (h|v)P*(v)

where is the learning rate and we used the fact thatog Py(v) = oy a5 2op Po(v:h) =

>on Pg(h|’0)% log Py(v, h). Eqg. (2) can be seen as a variant of the EM algorithm [5, 16,83re
the expectation) p, (5, p+() COrresponds to the E step and the gradienbgs (v, 1) is related

to the M step.

Instead of calculating analytically the true expectatiorEg. (2), it is possible to approximate it
by sampling the visible sequencesrom the target distributiotP*(v) and the hidden sequences
from the posterior distributio® (h|v) given the visible ones. Note that the posterior distributio
Py(h|v) could be hard to sample from. Indeed, at a tintiee posterior distribution oveér, does not
only depend on the past visible activity but also on the fittisible activity, since it is conditioned
on the whole visible activity,.r from time step 0 tdl". This renders a true challenge for on-
line algorithms. In the case of Hidden Markov Model trainitige forward-backward algorithm

IStrictly speaking the M step of the EM algorithm directly mahtes the solutiord™™ for which
% log Py(v, h) = 0 whereas in Eq. (2) there is only one step done in the directidine gradient.

[4, 19] combines information from the past (by forward filtey) and from the future (by backward
smoothing) to calculat&, (h|v).

If the statistical model does not have the Markovian propéhe problem of calculating’ (h|v)

(or sampling from it) becomes even harder. Here, we proppsdtarnative solution that does not
require to sample fronPy (h|v) and does not require the Markovian assumption (see [11,dt7] f
other approaches on samplifig(h|v)). We exploit that in all neuronal network models of interest
neuronal firing at any time point is conditionally indepentigiven the past activity of the network.
Using the chain rule this means that we can write the joirttibistion P (v, k) (see Fig. 1A) as

T N, T Ny
Py(v,h) = (Pe (vo) [T TT Po(ve.ilvos—1, host 1)) (Pe ho) [TTT Po(Peilvo:e—1, hout 1)>,

t=1i=1 t=1i=1

Ro(v|h) Qo (R|v) @)
whereRy(v|h) is easy to calculate (see below) ad(h|v) is easy to sample from. The sampling
can be accomplished by clamping the visible neurons to @&tagquence and let the hidden
dynamics run, i.e. at timg h; is sampled fromP, (h¢|vo.s—1ho.t—1). ¢ From Eq. (3), the posterior
distribution Py (h|v) can be written as

Ry (v]h)Qo(hv)
Py(v) : (4)

where the marginal distribution over the visible sequencesn be also expressed &s(v) =
<R9(v|h)>Q9(h‘u). As a consequence, by using Eq. (4), the learning rule in Bagzgn be rewritten
as

Po(hlv) =

(®)

B < Ry(u]h) alogPe<vah>>
- Mo o0 |
< (|)>Q9(h [v) Qo (h|v)P*(v)

Instead of calculating the true expectation, Eq. (5) canvaduated by usingVv samples (see algo-
rithm 1) where the factofjg (v, h) := Rg(v|h)/ (Ro(v|h')) g, |y @cts as the importance weight
[15]. Note that in the absence of hidden neurons, this fagtr, k) is equal to one and the maxi-
mum likelihood learning rule [2, 18] is recovered.

Note that for other conditional dependencies it might bessaable to splitPy(h|v) differently. For
example in models with the structure of Hidden Markov Modet® could make use of the fact that

Po(hlv) = 1= Pg(ht|v0t,ht+1) = 1‘[33%139@4%:,5) and take the product of filtering
distributlonng(h|v) = t:O ! Py(ht|vo.t) to sample from and use the importance weigRigv, h) =
1= %. Following the reasoning in the main text one finds an altéreo the forward-backward
algorithm [4, 19] that might be interesting to investigaietier.

Algorithm 1 Sequence learning (batch mode)

Set an initial@
while 6 not convergedo
v~ P*(v)
a(v) =0,Py(v) =0
fori=1...Ndo
h ~ Qa(h|v)
a(v) < a(v) + Re(v|h) =255
Pg() < Pg(’U) Rg(’U“L)
end for
0«6+ n;fg((?)
end while
return 6

along (v,h)

A B C G
: _— -
£ 10 S 09
c ©
= 20 g 0.8
5 30 S 0.7
10 20 30 10 20 30 10203 T
. . . 2 0.6
time stef time stef time stef 05
~0 750C 1500(
D E F learning ste|
H | J
)
o) ()
IS o
S c 10 1C
< — = 2
5 = =20 3
S 30
=] 4C
time stey 10203C 102030
10 20 aC 10 20 30 10 20 30 time stef time stef

time stef time stef time stef

Figure 2: Learning a non-Markovian sequence of temporaltyetated and linearly dependent states
with different learning rulesA The target distribution contained only this training pattéor 30
visible neurons and 30 time stef-F, H-J Overlay of 20 recalls after learning with 15 000 training
pattern presentation8 with only visible neurons and a simple asymmetric Hebb reke(main
text) C only visible neurons and learning rule Eq. (3)static weights towards 30 hidden neurons
(Reservoir Computindgt learning rule Eqg. (5)F online approximation Eq. (145 Learning curves
for the training pattern in A for only visible neurons (bldaie), static weights towards hidden (blue
line), online learning approximation (purple line) exaealning rule (red line). The performance
was measured in one minus average Hamming distance permperdime step (see main text).
H A training pattern that exhibits a gap of 5 time-stepfRecall with a network of 30 visible and
10 hidden neurons without learning the weights towardséndteuronsJ Recall after training the
same network with learning rule Eq. (5).

3 Binary neurons

In order to illustrate the learning rule given by Eq. (5), let consider sequences of binary pat-
terns. Letx denote the activity of the visible and hidden neurons, we= (v,h). Since the
individual neurons are binary, ; € {—1,1}, their distribution is given byPs(z;|zo:—1) =
(pei0t) o) /2(1 — p, ;6t)(1=70:)/2 where the firing rate, ; of neuroni at timet is given by

a monotonically increasing (and non-linear) functipof its membrane potential; ,, i.e.

Pti = g(ut i with Ut,i Z Wi Tt—1,5 - (6)

Note that these assumptions lead to Markovian neuronal mdigsai.e. Py(x¢|xo—1) =
Py(@,i|w-1) (see Fig. 1B). Further calculations will be slightly sinfigld, if we assume that the
non-linear functiory is constraint by the following differential equatiefy(u)/du = Bg(u)(1 —
g(u)dt). Note thatin the limit ob¢t — 0, this function is an exponential, i.e(u) = go exp(Su) and
1 _

for finite dt, it is a sigmoidal and takes the forgtu) = 6t~ (1 + ((godt) ™' — 1) exp(— Bu)) ,

where we constrained the solutions such §{8) = g, in order to be consistent with the case where
ot — 0.

For the distribution over the initial conditiord% (vy) and Py (ho) we choose delta distributions such
thatv, is equal to the first state of the training sequence/anis an arbitrary but fixed vector of
binary values. If we assume that the weights are the only adaptable parameters in this model,

4

1.0 — — ——

- 0.9 S
: :
a

§0.8 %
2 £
5 07 o
Q o
0.6

S0 40 60 80 1o T 20 40 60 80 100
number of hidden unit sequence lengl

Figure 3: Adding trainable hidden neurons leads to muckebedtall performance than having static
hidden neurons or no hidden neurons atAlComparison of the performance after 20000 learning
cycles between static (blue curve) and dynamic weights duede) towards hidden neurons for a
network with 30 visible and different numbers of hidden resin a training task with a uncorre-
lated random pattern of length 60 time steps. Bare generated random, uncorrelated sequences of
different length and compared the performance after 20€8Ing cycles for only visible neurons
(black curve), static weights towards hidden (blue curvi) dynamic weights towards hidden (red
curve).

we have
0log Py (ztilxot—1) 1 9 (ut ;) g (ug)0t Ouy;
) =-((i (1 — @y ’ ~ . 7
811)1'3' 2 (+ :Et’) g(u“) (b)1 — g(u“)(;t 811)1'3' ()
With the above assumption @rfu) and Eq. (3) and (6) we find
Olog P, (x I3 a
T,() = 5 2@ = (@i o,)T (8)
1] 1

t—
where(xm)Pe(mt dzey) = g(ug;)dt — (1 — g(uy,;)dt) and the indices andj run over all visible
and hidden neurons. The factBy, (v|h) can be expressed as

T Ny
Ry (v|h) = exp (% D0 (1 +wvra) log(p,idt) + (1 — vr:) log(1 — pt,z-zsw) NG

t=0 i=1

Let us now consider a simple case (Fig. 2) where the distabwver sequences is a delta distribu-
tion P*(v) = é(v — v*) around a single pattent (Fig. 2A) which is made of a set of temporally
correlated and linearly dependent staes} ., i.e. a non-Markovian pattern, thus making it a dif-

ficult pattern to learn with a simple asymmetric Hebb e, ; o ZtT:o vyyqvr 5 (Fig. 2B) oronly
visible neurons (Fig. 2C), which are both Markovian leaginles. The performance was measured
by one minus the Hamming distance per visible neuron andsteye —(T'N,) ' 3=, ; vt~} ;] /2
between target pattern and recall pattern averaged overuh30 Adding hidden neurons without
learning the weights towards hidden neurons is similar ¢oidlea used in the framework of Reser-
voir Computing (for a review see [13]): the visible statesde fixed reservoir of neurons that
returns a non-linear transformation of the input. Only thadout from hidden to visible neurons
and in our case the recurrent connections in the visibler laggetrained. To assure a sensible distri-
bution of weights towards hidden units, we used the weidtdswere obtained after learning with
Eqg. (5) and reshuffled them. Obviously, without training teservoir the performance is always
worse compared to a system with an equal number of hiddensbut dynamic weights (Fig. 2E
and 2F). With only a few hidden neurons our rule is also cap#@blearn patterns where the visi-
ble neurons are silent during a few time-steps. The traipaitern in Fig. 2H exhibits a gap of 5
time steps. After learning the weights towards 10 hidderreresuwith learning rule Eq. (5) recall
performance is nearly perfect (see Fig. 2J). With only Vésiieurons (not shown in Fig. 2) or static
weights towards hidden neurons the time gap was not leassedHig. 2I).

Aw [arbitrary unit$

° N
-40 -20 O 20 40
tpost—tpre [MS]

Figure 4: The learning rule Eq. (11) is compatible with Spikming Dependent Plasticity (STDP):
the weight gets potentiated if a presynaptic spike is folldwy a postsynaptic spike and depressed
otherwise. The time course of the postsynaptic potentidlthe refractory kernel is given in the
text.

In Fig. 3 we used again delta target distributid?s(v) = §(v — v*) with random uncorrelated
patternsv* of different length. Each model was trained with 20000 patfgesentations. For a
pattern of lengtl2 NV, = 60 only N, /2 = 15 trainable hidden neurons are sufficient to reach perfect
recall (see Fig. 3A). This is in clear contrast to the caseatfcshidden weights. Again the static
weights were obtained by reshuffling those that we obtairfitedt Erarning with Eq. (5). Fig. 3B
compares the capacity of our learning rule with = N, = 30 hidden neurons to the case of
no hidden neuron or static weights towards hidden neuronthot learning the weights towards
hidden neurons the performance drops to almost chance flaveequences of 45 or more time
steps, whereas with our learning rule this decrease of pe#ice occurs only at sequences of 100
or more time steps.

4 Limit to Continuous Time

Starting from the neurons in the last section we show thahénlimit to continuous time we can
implement the sequence learning task with stochasticrspikéurons [7].

First note that the state of a neuron at tima the model described in the previous section is
fully defined byu,; := Zj wijxe—1,; (See Eq. (6)) and its spiking activity, ;. The weighted
sum Zj w;;x+—1,; IS the response of neurarto the spikes of its presynaptic neurons and its own
spikes. The terms in this sum depend on the previous timeostigp In a more realistic model the
postsynaptic neuron feels the influence of presynaptiesglirough a perturbation of the membrane
potential on the order of a few milliseconds, which in theititn continuous time clearly cannot be
modeled by a one-time step response. For a more realistieim@dreplace:, ; in Eq. (6) by

o0 o0
g = E fisxtfs,i‘FE Wi E €sTi—sj (10)
s=1 VE s=1

— K — €
T =Tt

wherez;_,; € {0,1}. The kernek models the time-course of the response to a presynaptie spik
and« the refractoriness. Our model holds for any choices afidx, including for example a hard
refractory period where the neuron is forced not to spike.

In order to take the limitt — 0 in Eq. (9) we note that we can scal®,(v|h) without changing
the learning rule Eqg. (5), since there only the raig(v|h)/ (Ro(v|h')) g, 1|,y ENtErS. We use the
scalingR., (v|h) — Ry (v]h) := (godt)~5* Ry (v|h), whereS, denotes the total number of spikes
in the visible sequence, i.e. S, = Y, >, v, Note that for(0, 1)-units the expectation in
Eq. (8) become$rt,i>P9(wt dees) = g(ug;)dt = py 0t . Now we take the limitt — 0in Eq. (8)

6

and (9) and find

Olog Py(x) T .

e elt) [deptate) = piteas o) an
~ T Ny
Ry (v]h) = exp (/0 dt Y Bui(tyui(t) - m(t)) : (12)

where the training pattern runs from time 0% z;(t) = > . 6(t — tz(.f)) is the sum of delta
spikes of neurom at timestgf), z5(t) = [dse(s)z;(t — s) (and similarlyzf (t)) is the convolution
of presynaptic spike trains with the response kergl. With neuroni’s response to past spiking
activity u;(t) = () + >_,; wi;x5(t) and the escape rate functipp(t) = go exp (Bui(t)) we
recovered the defining equations of a simplified stochaptiegesponse model [7].

In Fig. 4 we display the weight change after forcing two negrto fire with a fixed time lag. For the
figure we used the kernels o« exp(—s/7.,) —exp(—s/7s) andks x — exp(—s/7y,) with 7,,, = 10
ms andr; = 2 ms. Our learning rule is consistent with STDP in the sensealpaesynaptic spike
followed by a postsynaptic spike leads to potentiation andepression otherwise. Note that this
result was also found in [18].

5 Approximate online version

Without hidden neurons the learning rule found by using Bd) {s straightforward to implement

in an online way where the parameters are updated at everyemtdmtime according tai;; o
(zi(t) — pi(t))z5(t) instead of waiting with the update until a training batchdiréd. Finding

an online version of the learning algorithm for networkshwitidden neurons turns out to be a
challenge, since we need to know the whole sequenaeslh in order to evaluate the importance
factor Ry(v|h)/(Re(v|h'))q,(n1v).- Here we propose to use in each time step an approximation
of the importance factor based on the network dynamics dutie preceding period of typical
sequence length and multiply it by the low-pass filtered geaof parameters. We write this section
with z;(¢) € {0, 1}, but similar expressions are easily found fg(t) € {—1,1}.

Algorithm 2 Sequence learning (online mode)
Set an initiakw;;, €;5, a, T, t
while w;; not convergedio
if ¢+ mod NT == 0 then
v~ P*(v)
end if
s=t modT
if s < 7then
h(s) ~ P(h(s)) elseh(s) ~ P, (h(s)|past spiking activity
end if
2(s) = (v(s), h(s))
eij — (1 — %)ez‘j + B(xi(s) — pi(s))z5(s)
a <+ (1—8)a+ S Bui(s)ui(s) — pi(s)
7 (1— 25)7 + exp(a)
wij wij + 2% e
t+t+ 0t
end while
return Wi j

In Eq. (13a) and (13b) we summarize how to use low-pass filteepproximate the integrals in
Eq. (11) and Eq. (12). The time constant of the low-pass fdtehosen to match the sequence length
T. To find an online estimate dffzy(v, 2')) ¢, (1/\.,) We assume that a training pattern~ P*(v)

is presented a few times in a row and after tiri&’, with N € N, N > 1, a new training pattern

is picked from the training distribution. Under this asstimp we can replace the average over

hidden sequences by a low-pass filter-afith time constantVT', see Eq. (13c). At the beginning
of each pattern presentation - i.e. during the time intelat), with 7 on the order of the kernel
time constant,, - the hidden activity:(s) is drawn from a given distributio® (h(s)).

__ Olog Py(x)

é13(t) = = eess(6) + B(aat) — pi(0)a5 () 63y (1) o 2B (132)
ij
Ny
a(t) = —%a@) +3 " Buityui(t) = pi(t) exp(a(T)) ~ R (v]h) (13b)
=1
NTr(t) = —7(t) +r(t), r(t):=exp(a(t)) F(NT) = (Ry(v, h/)>Q9(h’\v) (13c)
Finally we learn the model parameters in each time step dowpto
wi;(t) = n%em‘ (t). (14)

This online algorithm is certainly a rough approximationtw# batch algorithm. Nevertheless, when
applied to the challenging example (Fig. 2A) in section 8,flrformance of the online rule is close
to the one of the batch rule (Fig. 2F, G).

6 Discussion

Learning long and temporally correlated sequences witmat@etworks is a difficult task. In this
paper we suggested a statistical model with hidden neurmhderived a learning rule that leads to
optimal recall of the learned sequences given the neurgmaldics. The learning rule is derived by
minimizing the Kullback-Leibler divergence from traininigstribution to model distribution with a
variant of the EM-algorithm, where we use importance samgdth draw hidden sequences given the
visible training sequence. Choosing an appropriate tidion in the importance sampling step we
are able to circumvent inference which usually makes thritrg of non-Markovian models hard.
The resulting learning algorithm consists of a local terndolated by a global factor. We showed
that it is ready to be implemented with biologically reatisteurons and that an approximate online
version exists.

Our approach follows the ideas outlined in [2], where segadearning was considered with visible
neurons. Here we extended this model by adding stochadtiehineurons that help to perform well
with sequences of linearly depend states - including nonkbaan sequences - or long sequences.
As in [18] we look at the limit of continuous time and find thaetlearning rule is consistent with
Spike-Timing Dependent Plasticity. In contrast to Reser@@mputing [13] we train the weights
towards hidden neurons which clearly helps to improve parémce. Our learning rule does not
need a “wake” and a “sleep” phase as we know it from Boltzmaaohimes [1, 8].

Viewed in a different light our learning algorithm has a niogéerpretation: as in reinforcement
learning, the hidden neurons explore different sequendeste each trial leads to a global reward
signal that modulates the weight change. However, in centoacommon reinforcement learning
the reward is not provided by an external teacher but depswolds/ on the internal dynamics and
the visible neurons do not explore but are clamped to theitrgisequence.

To make our model even more biologically relevant, futureknshould aim for a biological im-
plementation of the global importance factor that dependthe spike timing and the membrane
potential of all the visible neurons (see Eq. (9)). It woulsbabe interesting to study online ap-
proximations of the learning algorithm in more detail oraggplication to models with the Hidden
Markov structure.

Acknowledgments

The authors thank Robert Urbanczik for helpful discussidiss work was supported by the Swiss
National Science Foundation (SNF), grant 31-133094, anchatdrom the Swiss SystemsX.ch
initiative (Neurochoice, evaluated by the SNF).

References

[1] D. Ackley and G. E. Hinton. A learning algorithm for boftann machine<Cognitive Science, 9(1):147—
169, 1985.

[2] D. Barber. Learning in spiking neural assembliégivances in Neural |nformation Processing Systems,
15, 2003.

[3] D. Barber.Bayesian Reasoning and Machine Learning. Cambridge University Press, 2011. In press.

[4] L.Baum, T. Petrie, G. Soules, and N. Weiss. A maximizatechnique occurring in the statistical analysis
of probabilistic functions of Markov chain§he Annals of Mathematical Satistics, 41(1):164-171, 1970.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum likelihootbfn incomplete data via the EM algorithm.
Journal of the Royal Satistical Society. Series B (Methodological), 39(1):1-38, 1977.

[6] A. During, A. Coolen, and D. Sherrington. Phase diagie@m storage capacity of sequence processing
neural networksJournal of Physics A: Mathematical and General, 31:8607, 1998.

[7] W. Gerstner and W. M. Kistle&piking neuron models: single neurons, populations, plasticity. Cambridge
University Press, 2002.

[8] G. E. Hinton. Training products of experts by minimizingntrastive divergenceNeural Computation,
14(8):1771-800, 2002.

[9] G. E. Hinton and A. Brown. Spiking boltzmann machinésivances in Neural Information Processing
Systems, 12, 2000.

[10] J. Hopfield. Neural networks and physical systems witilemyent collective computational abilities.
Proceedings of the National Academy of Sciences of the United States of America, 79(8):2554, 1982.

[11] P.Latham and J. W. Pillow. Neural characterizationantially observed populations of spiking neurons.
Advances in Neural Information Processing Systems, 20:1161-1168, 2008.

[12] M. Lengyel, J. Kwag, O. Paulsen, and P. Dayan. Matchtogagie and recall: hippocampal spike timing-
dependent plasticity and phase response culNatire Neuroscience, 8(12):1677-83, 2005.

[13] M. LukoSevicius and H. Jaeger. Reservoir computipgraaches to recurrent neural network training.
Computer Science Review, 3(3):127-149, 2009.

[14] W. Maass, T. Natschlager, and H. Markram. Real-timaguating without stable states: a new framework
for neural computation based on perturbatioeural Computation, 14(11):2531-60, 2002.

[15] D. J. C. MacKay.Information Theory, Inference & Learning Algorithms. Cambridge University Press,
2002.

[16] G. McLachlan and T. KrishnarThe EM Algorithm and Extensions. John Wiley and Sons, 1997.

[17] Y. Mishchenko and L. Paninski. Efficient methods for gding spike trains in networks of coupled
neurons.The Annals of Applied Satistics, 5(3):1893-1919, 2011.

[18] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstn@ptimal spike-timing-dependent plasticity for
precise action potential firing in supervised learniNgural Computation, 18(6):1318-1348, 2006.

[19] L. Rabiner. A tutorial on hidden Markov models and s&d€lcapplications in speech recognitioRro-
ceedings of the |EEE, 77(2):257-86, 1989.

[20] H. Sompolinsky and I. Kanter. Temporal associationsgrametric neural networksPhysical Review
Letters, 57(22):2861-64, 1986.

[21] 1. Sutskever, G. E. Hinton, and G. Taylor. The Recurréemporal Restricted Boltzmann Machine.
Advances in Neural Information Processing Systems, 21:1601-08, 2009.

[22] G. Taylor, G. E. Hinton, and S. Roweis. Modeling humartiorousing binary latent variablegdvances
in Neural Information Processing Systems, 19:1345-52, 2007.

