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We present a model of spike-driven synaptic plasticity inspired by exper-
imental observations and motivated by the desire to build an electronic
hardware device that can learn to classify complex stimuli in a semisu-
pervised fashion. During training, patterns of activity are sequentially
imposed on the input neurons, and an additional instructor signal drives
the output neurons toward the desired activity. The network is made of
integrate-and-fire neurons with constant leak and a floor. The synapses
are bistable, and they are modified by the arrival of presynaptic spikes.
The sign of the change is determined by both the depolarization and the
state of a variable that integrates the postsynaptic action potentials. Fol-
lowing the training phase, the instructor signal is removed, and the output
neurons are driven purely by the activity of the input neurons weighted
by the plastic synapses. In the absence of stimulation, the synapses pre-
serve their internal state indefinitely. Memories are also very robust to the
disruptive action of spontaneous activity. A network of 2000 input neu-
rons is shown to be able to classify correctly a large number (thousands)
of highly overlapping patterns (300 classes of preprocessed Latex charac-
ters, 30 patterns per class, and a subset of the NIST characters data set)
and to generalize with performances that are better than or comparable
to those of artificial neural networks. Finally we show that the synaptic
dynamics is compatible with many of the experimental observations on
the induction of long-term modifications (spike-timing-dependent plas-
ticity and its dependence on both the postsynaptic depolarization and
the frequency of pre- and postsynaptic neurons).
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1 Introduction

Many recent studies of spike-driven synaptic plasticity have focused on
using biophysical models to reproduce experimental data on the induc-
tion of long-term changes in single synapses (Senn, Markram, & Tsodyks,
2001; Abarbanel, Huerta, & Rabinovich, 2002; Shouval, Bear, & Cooper,
2002; Karmarkar & Buonomano, 2002; Saudargiene, Porr, & Wörgötter,
2004; Shouval & Kalantzis, 2005). The regulatory properties of synaptic
plasticity based on spike timing (STDP) have been studied both in re-
current neural networks and at the level of single synapses (see Abbott
& Nelson, 2000; Kempter, Gerstner, & van Hemmen, 2001; Rubin, Lee, &
Sompolinsky, 2001; Burkitt, Meffin, & Grayden, 2004), in which the au-
thors study the equilibrium distribution of the synaptic weights. These are
only two of the many aspects that characterize the problem of memory
encoding, consolidation, maintenance, and retrieval. In general these dif-
ferent aspects have been studied separately, and the computational impli-
cations have been largely neglected despite the fact that protocols to induce
long-term synaptic changes based on spike timing were initially considered
in the computational context of temporal coding (Gerstner, Kempter, van
Hemmen, & Wagner, 1996).

More recently, spike-driven synaptic dynamics has been linked to several
in vivo phenomena. For example, spike-driven plasticity has been shown
to improve the performance of a visual perceptual task (Adini, Sagi, &
Tsodyks, 2002), to be a good candidate mechanism for the emergence of
direction-selective simple cells (Buchs & Senn, 2002; Senn & Buchs, 2003),
and to shape the orientation tuning of cells in the visual cortex (Yao, Shen, &
Dan, 2004). In Yao et al. (2004) and Adini et al. (2002), spike-driven models
are proposed that make predictions in agreement with experimental results.
Only in Buchs and Senn (2002) and Senn and Buchs (2003) did the authors
consider the important problem of memory maintenance.

Other work has focused on the computational aspects of synaptic plastic-
ity but neglects the problem of memory storage. Rao and Sejnowski (2001),
for example, encode simple temporal sequences. In Legenstein, Naeger, and
Maass (2005), spike-timing-dependent plasticity is used to learn an arbitrary
synaptic configuration by imposing to the input and the output neurons the
appropriate temporal pattern of spikes. In (Gutig & Sompolinsky, 2006) the
principles of the perceptron learning rule are applied to the classification
of temporal patterns of spikes. Notable exceptions are Hopfield and Brody
(2004), in which the authors consider a self-repairing dynamic synapse, and
Fusi, Annunziato, Badoni, Salamon, & Amit (2000), Giudice and Mattia
(2001), Amit and Mongillo (2003), Giudice, Fusi, & Mattia (2003), and
Mongillo, Curti, Romani, & Amit (2005) in which discrete plastic synapses
are used to learn random uncorrelated patterns of mean firing rates as at-
tractors of the neural dynamics. However, a limitation of all these studies
is that the patterns stored by the network remain relatively simple.
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Here we propose a model of spike-driven synaptic plasticity that can
learn to classify complex patterns in a semisupervised fashion. The memory
is robust against the passage of time, the spontaneous activity, and the
presentation of other patterns. We address the fundamental problems of
memory: its formation and its maintenance.

1.1 Memory Retention. New experiences continuously generate new
memories that would eventually saturate the storage capacity. The interfer-
ence between memories can provoke the blackout catastrophe that would
prevent the network from recalling any of the previously stored memories
(Hopfield, 1982; Amit, 1989). At the same time, no new experience could be
stored. Instead, the main limitation on the storage capacity does not come
from interference if the synapses are realistic (i.e., they do not have an ar-
bitrarily large number of states) and hence allow only a limited amount of
information to be stored in each synapse.

When subject to these constraints old, memories are forgotten
(palimpsest property—Parisi, 1986; Nadal, Toulouse, Changeux, &
Dehaene, 1986). In particular, the memory trace decays in a natural way as
the oldest memories are replaced by more recent experiences. This is partic-
ularly relevant for any realistic model of synaptic plasticity that allows only
a limited amount of information to be stored in each synapse. The variables
characterizing a realistic synaptic dynamics are bounded and do not allow
for long-term modifications that are arbitrarily small. When subject to these
constraints, the memory trace decays exponentially fast (Amit & Fusi, 1992,
1994; Fusi, 2002), at a rate that depends on the fraction of synapses modified
by every experience: fast learning inevitably leads to fast forgetting of past
memories and results in uneven distribution of memory resources among
the stimuli (the most recent experiences are better remembered than old
ones). This result is very general and does not depend on the number of
stable states of each synaptic variable or on the specific synaptic dynamics
(Fusi, 2002; Fusi & Abbott, 2007). Slowing the learning process allows the
maximal storage capacity to be recovered for the special case of uncorre-
lated random patterns (Amit & Fusi, 1994). The price to be paid is that all
the memories should be experienced several times to produce a detectable
mnemonic trace (Brunel, Carusi, & Fusi, 1998). The brain seems to be will-
ing to pay this price in some cortical areas like inferotemporal cortex (see
Giudice et al., 2003, for a review).

The next question is how to implement a mechanism that slows learning
in an unbiased way. We assume that we are dealing with realistic synapses,
so it is not possible to reduce the size of the synaptic modifications induced
by each stimulus to arbitrarily small values. Fortunately each neuron sees a
large number of synapses, and memory retrieval depends on only the total
synaptic input. If only a small fraction of synaptic modifications is consol-
idated, then the change of the total synaptic input can be much smaller
than N�J , where N is the total number of synapses to be changed and �J
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is the minimal synaptic change. Randomly selecting the synaptic changes
that are consolidated provides a simple, local, unbiased mechanism to slow
learning (Tsodyks, 1990; Amit & Fusi, 1992, 1994). Such a mechanism re-
quires an independent stochastic process for each synapse, and depending
on the outcome of this process, the synaptic change is either consolidated or
cancelled. The irregularity of the neural activity provides a natural source
of randomness that can be exploited by the synapse (Fusi et al., 2000; Chicca
& Fusi, 2001; Fusi, 2003). In this letter, we employ this approach and study
a synapse that is bistable on long timescales. The bistability protects mem-
ories against the modifications induced by ongoing spontaneous activity
and provides a simple way to implement the required stochastic selection
mechanism. Not only is there accumulating evidence that biological single
synaptic contacts undergo all-or-none modifications (Petersen, Malenka,
Nicoll, & Hopfield, 1998; Wang, O’Connor, & Wittenberg, 2004), but addi-
tional synaptic states do not significantly improve the memory performance
(Amit & Fusi, 1994; Fusi, 2002; Fusi & Abbott, 2007).

1.2 Memory Encoding. The second important issue is related to the way
each synapse is modified to allow the network to recall a specific memory
at a later time. Here we deal with supervised learning: each stimulus to be
memorized imposes a characteristic pattern of activity on the input neu-
rons, and an “instructor” generates an extra synaptic current that steers the
activity of the output neurons in a desired direction. Note that the activity
of the output neurons is not entirely determined by the instructor because
the input neurons also contribute to determining the output (semisuper-
vised learning). The aim of learning is to modify the synaptic connections
between the input and the output neurons so that the output neurons re-
spond as desired in both the presence and absence of the instructor. This
problem can be solved with the perceptron learning rule (Rosenblatt, 1958)
or with algorithms such as backpropagation (see Hertz, Krogh, & Palmer,
1991). Here we focus on a more complex and biologically inspired spike-
driven synaptic dynamics that implements a learning algorithm similar to
that of the perceptron. In the past, similar implementations of the synaptic
dynamics have been successfully applied to learn nonoverlapping binary
patterns (Giudice & Mattia, 2001; Amit & Mongillo, 2003; Giudice et al.,
2003) and random uncorrelated binary patterns with a constant number of
active neurons (Mongillo et al., 2005). In all these works, the authors were
aiming to make the activity patterns imposed during training into stable
attractors of the recurrent network dynamics. Here we consider a feedfor-
ward network, but the synaptic dynamics we develop could just as well be
used in a recurrent network (see section 6.5 for more detail).

We show that in order to store more complex patterns with no restriction
on the correlations or number of active neurons, the long-term synaptic
dynamics should slow down when the response of the output neurons
is in agreement with the one generated by the total current of the input
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neurons. This is an indication that the currently presented pattern has al-
ready been learned and that it is not necessary to change the synapses fur-
ther (stop-learning condition, as in the case of the perceptron learning rule:
Rosenblatt, 1958; Block, 1962; Minsky & Papert, 1969). When a single output
neuron is considered, arbitrary linearly separable patterns can be learned
without errors (Senn & Fusi, 2005a, 2005b; Fusi & Senn, 2006) also in the ex-
treme case of binary synapses. If more than one output neuron is read, then
nonlinearly separable patterns can also be classified, which is not possi-
ble with a simple perceptron. We consider a network with multiple output
neurons, realistic spike-driven dynamics implementing the stop-learning
condition, and binary synapses on long timescales.

2 Abstract Learning Rule

We first describe the abstract learning rule: the schematic prescription ac-
cording to which the synapses should be modified at each stimulus presen-
tation. We then introduce the detailed spike-driven synaptic dynamics that
implements this prescription in an approximate fashion.

The stochastic selection and stop-learning mechanisms we require are
incorporated into a simple learning rule. We consider a single output neuron
receiving a total current h, which is the weighted sum of the activities si of
the N input neurons:

h =
1

N

N
∑

j=1

(J j − gI )s j , (2.1)

where the J j are the binary plastic excitatory synaptic weights (where
J j = 0, 1), and gI is a constant representing the contribution of an inhibitory
population. The latter can be regarded as a group of cells uniformly con-
nected to the input neurons and projecting their inhibitory afferents to the
output neuron. Following each stimulus, the synapses are updated accord-
ing to the following rule: if the instructor determines that the postsynaptic
output neuron should be active and the total input h is smaller than some
threshold value θ , then the efficacy of each synapse, J j , is set equal to
unity with a probability q+s j , proportional to the presynaptic activity s j .
In general, this activity is a continuous variable, s j ∈]0, 1[. In this letter, we
employ the binary activities s j = 0, 1. On the contrary, if the output neuron
should be inactive and h is larger than θ , then the synapse is depressed with
probability q−s j . The threshold θ determines whether the output neuron is
active in the absence of the instructor. The synapses are thus modified only
when the output produced by the weighted sum of equation 2.1 is un-
satisfactory, that is, it is not in agreement with the output desired by the
instructor. With this prescription, learning would stop as soon as the out-
put is satisfactory. However, in practice, it is useful to introduce a margin δ
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and stop potentiation only when h > θ + δ. Analogously, depression would
stop only when h < θ − δ. The margin δ guarantees a better generalization
(see section 5.6). The learning rule can be summarized as follows:

J i → 1 with probability q+si if hi < θ + δ and ξ = 1

J i → 0 with probability q−si if hi > θ − δ and ξ = 0, (2.2)

where ξ is a binary variable indicating the desired output as specified by
the instructor and the right arrow indicates how the synapse is updated.

This learning prescription allows us to learn linearly separable patterns
in a finite number of iterations (Senn & Fusi, 2005a, 2005b) provided that
(1) gI is between the minimal and the maximal excitatory weights (gI ∈

]0, 1[), (2) N is large enough, and (3) θ and δ and q± are small enough.

3 The Synaptic Model

The design of the synaptic dynamics has been largely dictated by the need to
implement in hardware the abstract learning rule described in the previous
section. The components we have selected are directly or indirectly related
to some known properties of biological synapses. They are combined to
produce a spike-driven synaptic dynamics that implements the desired
learning rule and, at the same time, is compatible with the experimental
protocols used to induce long-term modifications.

3.1 Memory Consolidation. The first aspect we consider is related to
memory preservation against the effects of both spontaneous activity and
the presentation of other stimuli. We assume that each synaptic update is
triggered by the arrival of a presynaptic spike. However, in order to pre-
serve existing memories, not all of these events will eventually lead to a
long-term modification of the synapse. If many of these events change the
synapse in the same direction and their effect accumulates, then the consol-
idation process might be activated. In such a case, the synapse is modified
permanently, or at least until the next stimulation. Otherwise the synaptic
efficacy preceding the stimulation would be restored. In the first case, a
transition to a new stable state occurred. The activation of the consolida-
tion process depends on the specific train of presynaptic spikes and on the
coincidence with other events (e.g., elevated postsynaptic depolarization).
Many presynaptic trains can share the same rate (which in our case encodes
the stimulus), but they can produce different outcomes in terms of con-
solidation. In particular, if the presynaptic spikes arrive at random times,
then consolidation is activated with some probability (Fusi et al., 2000; Fusi,
2003). This allows implementing the stochastic selection that chooses only a
small fraction of the synapses to be changed on each stimulus presentation.
Notice that the synaptic dynamics can be completely deterministic (as in
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our model) and that the stochasticity of the selection is generated by the
irregularity of the pre- and postsynaptic activities.

3.2 Memory Encoding. The main goal of our synaptic model is to en-
code patterns of mean firing rates. In order to guide our choice of model,
we incorporate elements that have a counterpart in neurophysiological ex-
periments on pairs of connected neurons. Specific experimental aspects we
choose to consider are:

1a: Spike-timing-dependent plasticity (STDP). If a presynaptic spike pre-
cedes a postsynaptic action potential within a given temporal win-
dow, the synapse is potentiated, and the modification is stable on long
timescales in the absence of other stimulations (memory is consoli-
dated). If the phase relation is reversed, the synapse is depressed. This
behavior has been observed in vitro (Markram, Lübke, Frotscher, &
Sakmann, 1997; Feldman, 2000; Sjöström, Turrigiano, & Nelson, 2001),
with realistic spike trains (Froemke & Dan, 2002; Sjöström et al., 2001),
and in vivo (Zhang, Tao, Holt, Harris, & Poo, 1998; Zhou, Tao, & Poo,
2003) for mean pre- and postsynaptic frequencies between 5 and
20 Hz.

1b: Dependence on postsynaptic depolarization. If the STDP protocol is
applied to obtain LTP but the postsynaptic neuron is hyperpolarized,
the synapse remains unaltered, or it slightly depresses (Sjöström et al.,
2001). More generally, the postsynaptic neuron needs to be sufficiently
depolarized for LTP to occur.

1c: LTP dominance at high frequencies. When both pre- and postsynap-
tic neurons fire at elevated frequencies, LTP always dominates LTD
regardless of the phase relation between the pre- and the postsynaptic
spikes (Sjöström et al., 2001).

The corresponding dynamic elements we include in our model are:

2a: STDP. Two dynamical variables are needed to measure the time
passed since the last pre- and postsynaptic spikes. They would be
updated on the arrival or generation of a spike and then decay on the
typical timescale of the temporal window of STDP (order of 10 ms).
Other dynamical variables acting on longer timescales would be
needed to restrict the STDP behavior in the frequency range of 5
to 20 Hz.

2b: Dependence on postsynaptic depolarization. A direct reading of the
depolarization is sufficient. Notice that the postsynaptic depolar-
ization can be used to encode the instantaneous firing rate of the
postsynaptic neuron (Fusi et al., 2000; Fusi, 2001): the average sub-
threshold depolarization of the neuron is a monotonic function of
the mean firing rate of the postsynaptic neurons, in both simple



2888 J. Brader, W. Senn, and S. Fusi

models of integrate-and-fire neurons (Fusi et al., 2000) and experi-
ments (Sjöström et al., 2001).

2c: LTP dominance at high frequencies. We assume that a relatively slow
variable acting on a timescale of 100 ms (internal calcium concentra-
tion is a good candidate—Abarbanel et al., 2002; Shouval et al., 2002)
will measure the mean postsynaptic frequency. For high values of this
variable, LTP should dominate, and aspects related to spike timing
should be disregarded.

Ingredients 2a to 2c are sufficient to implement the abstract learning
rule but without the desired stop-learning condition; that is, the condition
that if the frequency of the postsynaptic neuron is too low or too high,
no long-term modification should be induced. This additional regulatory
mechanism could be introduced through the incorporation of a new vari-
able or by harnessing one of the existing variables. A natural candidate to
implement this mechanism is calcium concentration, ingredient 2c, as the
average depolarization is not a sufficiently sensitive function of postsynap-
tic frequency to be exploitable (Fusi, 2003).

3.3 Model Reduction. We now introduce the minimal model that re-
produces all the necessary features and implements the abstract rule. STDP
can be achieved using a combination of depolarization dependence and
an effective neuronal model, as in Fusi et al. (2000) and Fusi (2003). When
a presynaptic spike shortly precedes a postsynaptic action potential, it is
likely that the depolarization of an integrate-and-fire neuron is high, re-
sulting in LTP. If the presynaptic spike comes shortly after the postsynaptic
action potential, the postsynaptic integrate-and-fire neuron is likely to be
recovering from the reset following spike emission, and it is likely to be
hyperpolarized, resulting in LTD. This behavior depends on the neuronal
model. In this work, we employ simple linear integrate-and-fire neurons
with a constant leak and a floor (Fusi & Mattia, 1999),

dV

dt
= −λ + I (t) (3.1)

where λ is a positive constant and I (t) is the total synaptic current. When
a threshold Vθ is crossed, a spike is emitted, and the depolarization is reset
to V = H. If at any time V becomes negative, then it is immediately reset
to V = 0. This model can reproduce quantitatively the response function
of pyramidal cells measured in experiments (Rauch, La Camera, Lüscher,
Senn, & Fusi, 2003). The adoption of this neuronal model, in addition to
the considerations on the temporal relations between pre- and postsynaptic
spikes, allows us to reproduce STDP (point 1a of the above list) with only
one dynamic variable (the depolarization of the postsynaptic neuron V(t)),
provided that we accept modifications in the absence of postsynaptic action
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potentials. Given that we never have silent neurons in realistic conditions,
the last restriction should not affect the network behavior much.

These considerations allow us to eliminate the two dynamic variables
of point 2a and to model the synapse with only one dynamic variable
X(t), which is modified on the basis of the postsynaptic depolarization V(t)
(ingredient 2b) and the postsynaptic calcium variable C(t). We emphasize
that we consider an effective model in which we attempt to subsume the
description into as few parameters as possible. It is clear that different
mechanisms are involved in the real biological synapses and neurons.

We now specify the details of the synaptic dynamics. The synapses are
bistable with efficacies J+ (potentiated) and J− (depressed). Note that the
efficacies J+ and J− can now be any two real numbers and are no longer
restricted to the binary values (0,1) as in the case of the abstract learning
rule. The internal state of the synapse is represented by X(t), and the efficacy
of the synapse is determined according to whether X(t) lies above or below
a threshold θX. The calcium variable C(t) is an auxiliary variable with a long
time constant and is a function of postsynaptic spiking activity,

dC(t)

dt
= −

1

τC
C(t) + JC

∑

i

δ(t − ti ), (3.2)

where the sum is over postsynaptic spikes arriving at times ti . JC is the
contribution of a single postsynaptic spike, and τC is the time constant (La
Camera, Rauch, Lüscher, Senn, & Fusi, 2004).

The variable X(t) is restricted to the interval 0 ≤ X ≤ Xmax (in this work,
we take Xmax = 1) and is a function of C(t) and of both pre- and postsyn-
aptic activity. A presynaptic spike arriving at tpre reads the instantaneous
values V(tpre) and C(tpre). The conditions for a change in X depend on these
instantaneous values in the following way,

X → X + a if V(tpre) > θV and θ l
up < C(tpre) < θ h

up

X → X − b if V(tpre) ≤ θV and θ l
down < C(tpre) < θ h

down, (3.3)

where a and b are jump sizes, θV is a voltage threshold (θV < Vθ ), and the θ l
up,

θ h
up, θ l

down and θ h
down are thresholds on the calcium variable (see Figure 2a).

In the absence of a presynaptic spike or if the conditions 3.3 are not satisfied,
then X(t) drifts toward one of two stable values,

d X

dt
= α if X > θX

d X

dt
= −β if X ≤ θX, (3.4)
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Figure 1: Stochastic synaptic transitions. (Left) A realization for which the ac-
cumulation of jumps causes X to cross the threshold θX (an LTP transition).
(Right) A second realization in which the jumps are not consolidated and thus
give no synaptic transition. The shaded bars correspond to thresholds on C(t);
see equation 3.3. In both cases illustrated here, the presynaptic neuron fires at a
mean rate of 50 Hz, while the postsynaptic neuron fires at a rate of 40 Hz.

where α and β are positive constants and θX is a threshold on the internal
variable. If at any point during the time course X < 0 or X > 1, then X is held
at the respective boundary value. The efficacy of the synapse is determined
by the value of the internal variable at tpre. If X(tpre) > θX, the synapse has
efficacy J+, and if X(tpre) ≤ θX, the synapse has efficacy J−. In Figure 1 we
show software simulation results for two realizations of the neural and
synaptic dynamics during a 300 ms stimulation period. In both cases, the
input is a Poisson train with a mean rate of 50 Hz and a mean output rate of
40 Hz. Due to the stochastic nature of pre- and postsynaptic spiking activity,
one realization displays a sequence of jumps that consolidate to produce
an LTP transition; X(t) crosses the threshold θX, whereas the other does not
cross θX and thus gives no transition. All parameter values are in Table 1.

4 Single Synapse Behavior

4.1 Probability of Potentiating and Depressing Events. The stochastic
process X(t) determining the internal state of the synapse is formed by an
accumulation of jumps that occur on arrival of presynaptic spikes. Before
analyzing the full transition probabilities of the synapse, we present results
for the probabilities that, given a presynaptic spike, X experiences either an
upward or downward jump. In Figure 2a, we show the steady-state proba-
bility density function of the calcium variable C(t) for different postsynaptic
frequencies. At low values of the postsynaptic firing rate νpost, the dynam-
ics are dominated by the decay of the calcium concentration, resulting in a
pile-up of the distribution about the origin. For larger values, νpost > 40 Hz,
the distribution is well approximated by a gaussian. The shaded bars in
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Table 1: Parameter Values Used in the Spike-Driven Network Simulations.

Neural Teacher Calcium Inhibitory Synaptic
Parameters Population Parameters Population Parameters Input Layer

λ 10 Vθ/s Nex 20 τC 60 ms Ninh 1000 a 0.1 Xmax Ninput 2000

θV 0.8 Vθ νex 50 Hz θ l
up 3 JC νinh 50 f Hz b 0.1 Xmax νstimulated 50 Hz

θ l
down 3 JC J inh −0.035 Vθ θx 0.5 Xmax νunstimulated 2 Hz

θh
down 4 JC α 3.5 Xmax/s J+ J ex

θh
up 13 JC β 3.5 Xmax/s J− 0

Notes: The parameters Vθ , Xmax, and JC set the scale for the depolarization, synaptic
internal variable and calcium variable, respectively. All three are set equal to unity. The
firing frequency of the inhibitory pool is proportional to the coding level f of the presented
stimulus. The teacher population projects to the output neurons, which should be active
in response to the stimulus.

Figure 1 indicate the thresholds for upward and downward jumps in X(t)
and correspond to the bars shown alongside C(t). The probability of an up-
ward or downward jump is thus given by the product of the probabilities
that both C(tpre) and V(tpre) fall within the defined ranges. Figure 2b shows
the jump probabilities Pup and Pdown as a function of νpost.

4.2 Probability of Long-Term Modifications. In order to calculate the
probability of long-term modification, we repeatedly simulate the time evo-
lution of a single synapse for given pre- and postsynaptic rate. The stimu-
lation period used is Tstim = 300 ms, and we ran Ntrials = 106 trials for each
(νpre, νpost) pair to ensure good statistics. In order to calculate the probabil-
ity of an LTP event, we initially set X(0) = 0 and simulated a realization of
the time course X(t). If X(Tstim) > θX at the end of the stimulation period,
we registered an LTP transition. An analogous procedure was followed to
calculate the LTD transition probability with the exception that the initial
condition X(0) = 1 was used and a transition was registered if X(Tstim) < θX.
The postsynaptic depolarization was generated by Poisson trains from ad-
ditional excitatory and inhibitory populations. It is known that a given
mean firing rate does not uniquely define the mean µ and variance σ 2 of
the subthreshold depolarization, and although not strongly sensitive, the
transition probabilities do depend on the particular path in (µ, σ 2) space.
We choose the linear path σ 2 = 0.015µ + 2, which yields the same statistics
as the full network simulations considered later and thus ensures that the
transition probabilities shown in Figure 2 provide an accurate guide. The
linearity of the relations between σ 2 and µ comes from the fact that for a
Poisson train of input spikes emitted at a rate ν, both σ 2 and µ are linear
functions of ν, and the coefficients are known functions of the connectivity
and the average synaptic weights (see Fusi, 2003).
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Figure 2: (a) Probability density function of the internal calcium variable for
different values of νpost. The bars indicate regions for which upward and down-
ward jumps in the synaptic internal variable, X, are allowed, labeled LTP and
LTD, respectively. See equation 3.3. (b) Probability for an upward or downward
jump in X as a function of postsynaptic frequency. (c, d) LTP and LTD transition
probabilities, respectively, as a function of νpost for different values of νpre. The
insets show the height of the peak in the transition probabilities as a function of
the presynaptic frequency.

In Figure 2 we show the transition probabilities as a function of νpost for
different νpre values. There exists a strong correspondence between the jump
probabilities and the synaptic transition probabilities of Figure 2. The con-
solidation mechanism yields a nonlinear relationship between the two sets
of curves. The model synapse displays Hebbian behavior: LTP dominates at
high νpost, and LTD dominates at low νpost when the presynaptic neuron is
stimulated. When the presynaptic neuron is not stimulated, the transition
probabilities become so small that the synapse remains unchanged. The
decay of the transition probabilities at high and low values of νpost imple-
ments the stop-learning condition and is a consequence of the thresholds
on C(t). The inset to Figure 2 shows the peak height of the LTP and LTD
probabilities as a function of νpre. For νpre > 25 Hz the maximal transition
probability shows a linear dependence upon νpre. This important feature
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Figure 3: A schematic of the network architecture for the special case of a data
set consisting of two classes. The output units are grouped into two pools,
selective to stimuli C1 and C2, respectively, and are connected to the input layer
by plastic synapses. The output units receive additional inputs from teacher
and inhibitory populations.

implies that use of this synapse is not restricted to networks with binary
inputs, as considered in this work, but would also prove useful in networks
employing continuous valued input frequencies.

A useful memory device should be capable of maintaining the stored
memories in the presence of spontaneous activity. In order to assess the sta-
bility of the memory to such activity, we have performed long simulation
runs, averaging over 107 realizations, for νpre = 2 Hz and a range of νpost val-
ues in order to estimate the maximal LTP and LTD transition probability. We
observed no synaptic transitions during any of the trials. This provides up-
per bounds of PLTP(νpre = 2 Hz) < 10−7 and PLTD(νpre = 2 Hz) < 10−7. With
a stimulation time of 300 ms, this result implies 0.3 × 107 seconds between
synaptic transitions and provides a lower bound to the memory lifetime
of approximately 1 month, under the assumption of 2 Hz spontaneous
activity.

5 Network Performance

5.1 The Architecture of the Network. The network architecture we
consider consists of a single feedforward layer composed of Ninp input
neurons fully connected by plastic synapses to Nout outputs. Neurons in the
output layer have no lateral connection and are subdivided into pools of size
Nclass

out , each selective to a particular class of stimuli. In addition to the signal
from the input layer, the output neurons receive additional signals from
inhibitory and teacher populations. The inhibitory population provides a
signal proportional to the coding level of the stimulus and serves to balance
the excitation coming from the input layer (as required in the abstract rule;
see section 2). A stimulus-dependent inhibitory signal is important, as it
can compensate for large variations in the coding level of the stimuli. The
teacher population is active during training and imposes the selectivity of
the output pools with an additional excitatory signal. A schematic view of
this network architecture is shown in Figure 3.



2894 J. Brader, W. Senn, and S. Fusi

Multiple arrays of random classifiers have been the subject of consider-
able interest in recent studies of machine learning and can achieve results
for complex classification tasks far beyond those obtainable using a single
classifier (Nclass

out = 1) (see section 6 for more on this point).
Following learning, the response of the output neurons to a given stimu-

lus can be analyzed by selecting a single threshold frequency to determine
which neurons are considered active (express a vote). The classification
result is determined using a majority rule decision between the selective
pools of output neurons. (For a biologically realistic model implementing a
majority rule decision, see Wang, 2002.) We distinguish among three possi-
bilities upon presentation of a pattern: (1) correctly classified—the output
neurons of the correct selective pool express more votes than the other pools;
(2) misclassified—an incorrect pool of output neurons wins the vote; and
(3) nonclassified—no output neuron expresses a vote and the network re-
mains silent. Nonclassifications, are preferable to misclassifications, as a
null response to a difficult stimulus retains the possibility that such cases
can be sent to other networks for further processing. In most cases, the
majority of the errors can be made nonclassifications with an appropriate
choice of threshold. The fact that a single threshold can be used for neu-
rons across all selective pools is a direct consequence of the stop-learning
condition, which keeps the output response within bounds.

5.2 Illustration of Semisupervised Learning. To illustrate our ap-
proach to supervised learning, we apply our spike-driven network to a data
set of 400 uncorrelated random patterns with low coding level ( f = 0.05)
divided equally into two classes. The initial synaptic matrix is set randomly,
and an external teacher signal is applied that drives the (single) output neu-
ron to a mean rate of 50 Hz on presentation of a stimulus of class 1 and to
6 Hz on presentation of a stimulus of class 0; the mean rates of 50 Hz and
6 Hz result from the combined input of teacher plus stimulus. The LTP and
LTD transition probabilities shown in Figure 2 intersect at νpost ∼ 20 Hz.
Stimuli that elicit an initial output response more than 20 Hz on average ex-
hibit a strengthening of this response during learning, whereas stimuli that
elicit an initial response less than 20 Hz show a weakening response during
learning. The decay of the transition probabilities at both high and low νpost

eventually arrests the drift in the output response and prevents overlearning
the stimuli. Patterns are presented in random order, and by definition, the
presentation number increases by 1 for every 400 patterns presented to the
network. In Figure 4 we show output frequency histograms across the data
set as a function of presentation number. The output responses of the two
classes become more strongly separated during learning and eventually
begin to pile up around 90 Hz and 0 Hz due to the decay of the transi-
tion probabilities. Figure 5 shows the output frequency distributions across
the data set in the absence of a teacher signal both before and after learn-
ing. Before learning, both classes have statistically identical distributions.
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Figure 4: Frequency response histograms on presentation of the training set
at different stages during learning for a simple test case consisting of a single
output neuron. Throughout learning, the teacher signal is applied to enforce
the correct response. The panels from back to front correspond to presentation
number 1, 60, 120, 180, and 240, respectively. The solid and dashed curves
correspond to the LTD and LTP transition probabilities, respectively, from
Figure 2.
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Figure 5: Frequency response histograms before and after learning. (a) Re-
sponse to class 1 (filled circles) and class 0 (open squares) before learning with-
out external teacher signal. (b) Response before learning with teacher signal.
(c) Response after learning with teacher signal. (d) Situation after learning with-
out teacher signal.
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Following learning, members of class 0 have a reduced response, whereas
members of class 1 have responses distributed around 45 Hz. Classification
can then be made using a threshold on the output frequency.

When considering more realistic stimuli with a higher level of correla-
tion, it becomes more difficult to achieve a good separation of the classes,
and there may exist considerable overlap between the final distributions. In
such cases it becomes essential to use a network with multiple output units
to correctly sample the statistics of the stimuli.

5.3 The Data Sets and the Classification Problem. Real-world stim-
uli typically have a complex statistical structure very different from the
idealized case of random patterns often considered. Such stimuli are char-
acterized by large variability within a given class and a high level of corre-
lation between members of different classes. We consider two separate data
sets.

The first data set is a binary representation of 293 Latex characters pre-
processed, as in Amit and Mascaro (2001) and presents in a simple way
these generic features of complex stimuli. Each character class consists of
30 members generated by random distortion of the original character.
Figure 6 shows the full set of characters. This data set has been previ-
ously studied in Amit and Geman (1997) and Amit and Mascaro (2001)
and serves as a benchmark test for the performance of our network. In
Amit and Mascaro (2001) a neural network was applied to the classification
problem, and in Amit and Geman (1997), decision trees were employed. It
should be noted that careful preprocessing of these characters is essential
to obtain good classification results, and we study the same preprocessed
data set used in Amit and Mascaro (2001). The feature space of each char-
acter is encoded as a 2000-element binary vector. The coding level f (the
fraction of active neurons) is sparse but highly variable, spanning a range
0.01 < f < 0.04. On presentation of a character to the network, we assign
one input unit per element which is activated to fire at 50 Hz if the element
is unity but remains at a spontaneous rate of 2 Hz if the element is zero.
Due to random character deformations, there is a large variability within
a given class, and despite the sparse nature of the stimuli, there exist large
overlaps between different classes.

The second data set we consider is the MNIST data set, a subset of
the larger NIST handwritten characters data set. The data set consists of
10 classes (digits 0 → 9) on a grid of 28 × 28 pixels. (The MNIST data set
is available from http://yann.lecun.com, which also lists a large number
of classification results.) The MNIST characters provide a good benchmark
for our network performance and have been used to test numerous classi-
fication algorithms. To input the data to the network, we construct a 784-
element vector from the pixel map and assign a single input neuron to each
element. As each pixel has a grayscale value, we normalize each element
such that the largest element has value unity. From the full MNIST data set,
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Figure 6: The full Latex data set containing 293 classes. (a) Percentage of non-
classified patterns in the training set as a function of the number of classes for
different numbers of output units per class. Results are shown for 1(∗), 2, 5, 10,
and 40(+) outputs per class using the abstract rule (points) and for 1, 2, and 5
outputs per class using the spike-driven network (squares, triangles, and cir-
cles, respectively). In all cases, the percentage of misclassified patterns is less
than 0.1%. (b) Percentage of nonclassified patterns as a function of the number
of output units per class for different numbers of classes (abstract rule). Note
the logarithmic scale. (c) Percentage of nonclassified patterns as a function of
number of classes for generalization on a test set (abstract rule). (d) Same as for
c but showing percentage of misclassified patterns.
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we randomly select 20,000 examples for training and 10,000 examples for
testing.

The Latex data set is more convenient for investigating the trends in
behavior due to the large number of classes available. The MNIST data
set is complementary to this; although there are only 10 classes, the large
number of examples available for both training and testing makes possible
a more meaningful assessment of the asymptotic (large number of output
neurons) performance of the network relative to existing results for this
data set. For both data sets the high level of correlation between members
of different classes makes this a demanding classification task.

We now consider the application of our network to these data sets. We
first present classification results on a training set obtained from simula-
tions employing the full spike-driven network. As such simulations are
computationally demanding, we supplement the results obtained from the
spike-driven network with simulations performed using the abstract learn-
ing rule in order to explore more fully the trends in performance. We then
perform an analysis of the stability of the spike-driven network results
with respect to parameter fluctuations, an issue of practical importance
when considering hardware VLSI implementation. Finally, we consider the
generalization ability of the network.

5.4 Spike-Driven Network Performance. The parameters entering the
neural and synaptic dynamics as well as details of the inhibitory and teacher
populations can be found in Table 1. In our spike-driven simulations, the
inhibitory pool sends Poisson spike trains to all output neurons at a mean
rate proportional to the coding level of the presented stimulus (note that
each output neuron receives an independent realization at the same mean
rate). The teacher population is purely excitatory and sends additional
Poisson trains to the output neurons, which should be selective to the
present stimuli. It now remains to set a value for the vote expression thresh-
old. As a simple method to set this parameter, we performed preliminary
simulations for the special case Nclass

out = 1 and adjusted the output neuron
threshold to obtain the best possible performance on the full data set. The
optimal choice minimizes the percentage of nonclassified patterns without
allowing significant misclassification errors. This value was then used in
all subsequent simulations with Nclass

out > 1. In Figure 6a we show the per-
centage of nonclassified patterns as a function of number of classes for net-
works with different values of Nclass

out . In order to suppress fluctuations, each
data point is the average over several random subsets taken from the full
data set.

Given the simplicity of the network architecture, the performance on
the training set is remarkable. For Nclass

out = 1 the percentage of nonclassified
patterns increases rapidly with the number of classes; however, as Nclass

out is
increased, the performance rapidly improves, and the network eventually
enters a regime in which the percentage of nonclassified patterns remains
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almost constant with increasing class number. In order to test the extent
of this scaling, we performed a single simulation with 20 output units per
class and the full 293-class data set. In this case we find 5.5% nonclassified
(0.1% misclassified), confirming that the almost constant scaling continues
across the entire data set. We can speculate that if the number of classes were
further increased, the system would eventually enter a new regime in which
the synaptic matrix becomes overloaded and errors increase more rapidly.
The total error of 5.6% that we incur using the full data set with Nclass

out = 20
should be contrasted with that of (Amit and Mascaro, 2001), who reported
an error of 39.8% on the 293 class problem using a single network with 6000
output units, which is roughly equivalent to our network with Nclass

out =

20. By sending all incorrectly classified patterns to subsequent networks
for reanalysis (“boosting”; see section 8.6), Amit and Mascaro obtained
5.4% error on the training set using 15 boosting cycles. This compares
favorably with our result. We emphasize that we use only a single network,
and essentially all of our errors are nonclassifications. Figure 6b shows the
percentage of nonclassified patterns as a function of the number of output
units per class for fixed class number.

In order to evaluate the performance for the MNIST data set, we retain all
the parameter values used for the Latex experiments. Although it is likely
that the results on the MNIST data set could be optimized using specially
tuned parameters, the fact that the same parameter set works adequately for
both MNIST and Latex cases is a tribute to the robustness of our network (see
section 5.7 for more on this issue). We find that near-optimal performance
on the training set is achieved for Nclass

out = 15, for which we obtain 2.9%
nonclassifications and 0.3% misclassifications.

5.5 Abstract Rule Performance. Due to the computational demands of
simulating the full spike-driven network, we have performed complemen-
tary simulations using the abstract rule in equation 2.2 to provide a fuller
picture of the behavior of our network. The parameters are chosen such that
the percentage of nonclassified patterns for the full data set with Nclass

out = 1
matches those obtained from the spike-driven network. In Figure 6a we
show the percentage of nonclassified patterns as a function of number of
classes for different values of Nclass

out . Although we have chosen the abstract
rule parameters by matching only a single data point to the results from the
spike-driven network, the level of agreement between the two approaches
is excellent.

5.6 Generalization. We tested the generalization ability of the network
by selecting randomly 20 patterns from each class for training and reserving
the remaining 10 for testing. In Figures 6c and 6d, we show the percent-
age of mis- and nonclassified patterns in the test set as a function of the
number of classes for different values of Nclass

out . The monotonic increase
in the percentage of nonclassified patterns in the test set is reminiscent
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of the training set behavior but lies at a slightly higher value for a given
number of classes. For large Nclass

out , the percentage of nonclassifications ex-
hibits the same slow increase with number of classes as seen in the training
set. Although the percentage of misclassifications increases more rapidly
than the nonclassifications, it also displays a regime of slow increase for
Nclass

out > 20.
When applied to the MNIST data set, the spiking network yields very rea-

sonable generalization properties. We limit ourselves to a maximum value
of Nclass

out = 15 due to the heavy computational demand of simulating the
spike-driven network. Using Nclass

out = 15, we obtain 2.2% nonclassifications
and 1.3% misclassifiactions. This compares favorably with existing results
on this data set and clearly demonstrates the effectiveness of our spike-
driven network. For comparison, k-nearest neighbor classifiers typically
yield a total error in the range 2% to 3%, depending on the specific imple-
mentation, with a best result of 0.63% error obtained using shape context
matching (Belongie, Malik, & Puzicha, 2002). (For a large number of results
relating to the MNIST data set, see http://www.lecun.com.) Convolutional
nets yield a total error around 1%, depending on the implementation, with
a best performance of 0.4% error using cross-entropy techniques (Simard,
Steinkraus, & Platt, 2003).

We have also investigated the effect of varying the parameter δ on the
generalization performance using the abstract learning rule. Optimal per-
formance on the training set is obtained for small values of δ, as this enables
the network to make a more delicate distinction between highly correlated
patterns. The price to be paid is a reduced generalization performance,
which results from overlearning the training set. Conversely, a larger value
of δ reduces performance on the training set but improves the generaliza-
tion ability of the network. In the context of a recurrent attractor network,
δ effectively controls the size of the basin of attraction. In general, an in-
termediate value of δ allows compromise between accurate learning of the
test set and reasonable generalization.

5.7 Stability with Respect to Parameter Variations. When considering
hardware implementations, it is important to ensure that any proposed
model is robust with respect to variations in the parameter values. A ma-
terial device provides numerous physical constraints, and so an essential
prerequisite for hardware implementation is the absence of fine-tuning re-
quirements. To test the stability of the spiking network, we investigate the
change in classification performance with respect to perturbation of the
parameter values for the special case of Nclass

out = 20 with 50 classes.
In order to identify the most sensitive parameters, first consider the

effect of independent variation. At each synapse, the parameter value is
reselected from a gaussian distribution centered about the tuned value and
with a standard deviation equal to 15% of that value. All other parameters
are held at their tuned values. This approach approximates the natural
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Figure 7: Stability of the network with respect to variations in the key pa-
rameters; see equations 2.2, 3.1, and 3.2. The black bars indicate the change in
the percentage of nonclassified patterns, and the dark gray bar indicates the
change in the percentage of misclassified patterns on random perturbation of
the parameter values. With no perturbation, the network yields 4% nonclassified
(light gray bars) and less than 0.1% misclassified. Simultaneous perturbation of
all parameters is marked {. . . } in the right-most column. The inset shows the
change in the percentage of nonclassified (circles) and misclassified (squares)
patterns as a function of the parameter noise level when all parameters are
simultaneously perturbed.

variation that occurs in hardware components and can be expected to vary
from synapse to synapse (Chicca, Indiveri, & Douglas, 2003). In Figure 7 we
report the effect of perturbing the key parameters on the percentage of non-
and misclassified patterns. The most sensitive parameters are those related
to jumps in the synaptic variable X(t), as these dominate the consolidation
mechanism causing synaptic transitions.

To mimic a true hardware situation more closely, we also consider simul-
taneous perturbation of all parameters. Although the performance degrades
significantly, the overall performance drop is less than might be expected
from the results of independent parameter variation. It appears that there
are compensation effects within the network. The inset to Figure 7 shows
how the network performance changes as a function of the parameter noise
level (standard deviation of the gaussian). For noise levels less than 10%,
the performance is only weakly degraded.
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6 Discussion

Spike-driven synaptic dynamics can implement semisupervised learning.
We showed that a simple network of integrate-and-fire neurons connected
by bistable synapses can learn to classify complex patterns. To our knowl-
edge, this is the first work in which a complex classification task is solved by
a network of neurons connected by biologically plausible synapses, whose
dynamics is compatible with several experimental observations on long-
term synaptic modifications. The network is able to acquire information
from its experiences during the training phase and to preserve it against
the passage of time and the presentation of a large number of other stim-
uli. The examples shown here are more than toy problems, which would
illustrate the functioning of the network. Our network can classify correctly
thousands of stimuli, with performances that are better than those of more
complex, multilayer traditional neural networks.

The key to this success lies in the possibility of training different output
units on different subsets or subsections of the stimuli (boosting technique—
Freund & Schapire, 1999). In particular, the use of random connectivity be-
tween input and output layers would allow each output neuron to sample
a different subsection of every stimulus. Previous studies (Amit & Mascaro,
2001) employed deterministic synapses and a quenched random connectiv-
ity. Here we use full connectivity but with stochastic synapses to generate
the different realizations. This yields a dynamic random connectivity that
changes continuously in response to incoming stimuli.

In order to gain some intuition into the network behavior, it is useful to
consider an abstract space in which each pattern is represented by a point.
The synaptic weights feeding into each output neuron define hyperplanes
that divide the space of patterns. During learning, the hyperplanes follow
stochastic trajectories through the space in order to separate (classify) the
patterns. If at some point along the trajectory, the plane separates the space
such that the response at the corresponding output neuron is satisfactory,
then the hyperplane does not move in response to that stimulus. With a
large number of output neurons, the hyperplanes can create an intricate
partitioning of the space.

6.1 Biological Relevance

6.1.1 Compatibility with the Observed Phenomenology. Although the synap-
tic dynamics was mostly motivated by the need to learn realistic stimuli,
it is interesting to note that the resulting model remains consistent with
experimental findings. In order to make contact with experiments on pairs
of connected neurons, we consider the application of experimentally re-
alistic stimulation protocols to the model synapse. A typical protocol for
the induction of LTP or LTD is to pair pre- and postsynaptic spikes with a
given phase relation. In the simulations presented in Figure 8, we impose a



Learning Real-World Stimuli with Plastic Synapses 2903

Figure 8: Synaptic transition probabilities for (a) paired post-pre, (b) paired pre-
post, and (c) uncorrelated stimulation as a function of νpost. The full curve is PLTP

and the dashed curve PLTD. For the post-pre and pre-post protocols, the phase
shift between pre- and postspikes is fixed at +6 ms and −6 ms, respectively. In all
cases, νpre = νpost. (d) The tendency T (see equation 6.1) as a function of the phase
between pre- and postsynaptic spikes for a mean frequency νpre = νpost = 12 Hz.

post-pre or pre-post pairing of spikes with a phase shift of +6 ms or −6 ms,
respectively, and simulate the synaptic transition probabilities as a function
of νpost = νpre over a stimulation period of 300 ms. The postsynaptic neu-
ron is made to fire at the desired rate by application of a suitable teacher
signal. When the prespike precedes the postspike, then LTP dominates at
all frequencies; however, when the prespike falls after the postspike, there
exists a frequency range (5 < νpost < 20) over which LTD dominates. This
LTD region is primarily due to the voltage decrease following the emission
of a postsynaptic spike. As the frequency increases, it becomes increas-
ingly likely that the depolarization will recover from the postspike reset
to attain a value larger than θV , thus favoring LTP. For completeness, we
also present the LTP and LTD transition probabilities with uncorrelated
pre- and postsynaptic spikes. We maintain the relation νpre = νpost. We also
test the spike-timing dependence of the transition probabilities by fixing
νpost = 12 Hz and varying the phase shift between pre- and postsynaptic
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spikes. In Figure 8, we plot the tendency (Fusi, 2003) as a function of phase
shift. The tendency T is defined as

T =

(

PLTP

PLTD+PLTP

−
1

2

)

max(PLTP, PLTD). (6.1)

A positive value of T implies dominance of LTP, whereas a negative value
implies dominance of LTD. Although the STDP time window is rather short
(∼10 ms) the trend is consistent with the spike timing induction window
observed in experiments.

6.1.2 Predictions. We already know that when pre- and postsynaptic fre-
quencies are high enough, LTP is observed regardless the detailed temporal
statistics (Sjöström et al., 2001). As the frequencies of pre- and postsynaptic
neurons increase, we predict that the amount of LTP should progressively
decrease until no long-term modification becomes possible. In the high-
frequency regime, LTD can become more likely than LTP, provided that the
total probability of a change decreases monotonically at a fast rate. Large
LTD to compensate LTP would produce an average modification that is also
small, but it would actually lead to fast forgetting as the synapses would
be modified anyway. A real stop-learning condition is needed to achieve
high classification performance. Although experimentalists did not study
systematically what happens in the high-frequency regime, there is pre-
liminary evidence for a nonmonotonic LTP curve (Wang & Wagner, 1999).
Other regulatory mechanisms that would stop learning as soon as the neu-
ron responds correctly might be also possible. However, the mechanism we
propose is probably the best candidate in cases in which a local regulatory
system is required and the instructor is not “smart” enough.

6.2 Parameter Tuning. We showed that the network is robust to hetero-
geneities and to parameter variations. However, the implementation of the
teacher requires the tuning of one global parameter controlling the strength
of the teacher signal (essentially the ratio νex/νstimulated ; see Table 1). This
signal should be strong enough to steer the output activity in the desired
direction and in the presence of a noisy or contradicting input. Indeed, be-
fore learning, the synaptic input is likely to be uncorrelated with the novel
patterns to be learned, and the total synaptic input alone would produce
a rather disordered pattern of activity of the output neurons. The teacher
signal should be strong enough to dominate over this noise. At the same
time, it should not be so strong that it brings the synapse into the region
of very slow synaptic changes (the region above ∼100 Hz in Figure 4). The
balance between the teacher signal and the external input is the only pa-
rameter we need to tune to make the network operate in the proper regime.
In the brain, we might hypothesize the existence of other mechanisms (e.g.,
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homeostasis; Turrigiano & Nelson, 2000), which would automatically create
the proper balance between the synaptic inputs of the teacher (typically a
top-down signal) and the synaptic inputs of the sensory stimuli.

6.3 Learning Speed. Successful learning usually requires hundreds of
presentations of each stimulus. Learning must be slow to guarantee an
equal distribution of the synaptic resources among all the stimuli to be
stored. Faster learning would dramatically shorten the memory lifetime,
making it impossible to learn a large number of patterns. This limitation
is a direct consequence of the boundedness of the synapses (Amit & Fusi,
1994; Fusi, 2002; Senn & Fusi, 2005a, 2005b) and can be overcome only
by introducing other internal synaptic states that would correspond to
different synaptic dynamics. In particular, it has been shown that a cascade
of processes, each operating with increasingly small transition probabilities,
can allow for a long memory lifetime without sacrificing the amount of
information acquired at each presentation (Fusi, Drew, & Abbott, 2005). In
these models, when the synapse is potentiated and the conditions for LTP
are met, the synapse becomes progressively more resistant to depression.
These models can be easily implemented by introducing multiple levels
of bistable variables, each characterized by different dynamics and each
one controlling the learning rate of the previous level. For example, the
jumps ak and bk of level k might depend on the state of level k + 1. These
models would not lead to better performance, but they would certainly
guarantee a much faster convergence to a successful classification. They
will be investigated in future work.

Notice also that the learning rates can be easily controlled by the statis-
tics of the pre- and postsynaptic spikes. So far we considered a teacher
signal that increases or decreases the firing rate of the output neurons.
However, the higher-order statistics (e.g., the synchronization between pre-
and postsynaptic neurons) can also change, and our synaptic dynamics
would be rather sensitive to these alterations. Attention might modulate
these statistics, and the learning rate would be immediately modified with-
out changing any inherent parameter of the network. This idea has already
been investigated in a simplified model in Chicca and Fusi (2001).

6.4 Applications. The synaptic dynamics we propose has been imple-
mented in neuromorphic analog VLSI (very large scale integration) (Mitra,
Fusi, & Indiveri, 2006; Badoni, Giulioni, Dante, & Del Giudice, 2006; Indiveri
& Fusi, 2007). A similar model has been introduced in Fusi et al. (2000) and
the other components required to implement massively parallel networks
of integrate-and-fire neurons and synapses with the new synaptic dynamics
have been previously realized in VLSI in (Indiveri, 2000, 2001, 2002; Chicca
& Fusi, 2001). There are two main advantages of our approach. First, all the
information is transmitted by events that are highly localized in time (the
spikes): this leads to low power consumption and optimal communication
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bandwidth usage (Douglas, Deiss, & Whatley, 1998; Boahen, 1998). Notice
that each synapse in order to be updated requires the knowledge of the time
of occurrence of the presynaptic spikes, its internal state, and other dynamic
variables of the postsynaptic neuron (C and V). Hence each synapse needs
to be physically connected to the postsynaptic neuron. The spikes from the
presynaptic cell can come from other off-chip sources. Second, the mem-
ory is preserved by the bistability. In particular, it is retained indefinitely
if no other presynaptic spikes arrive. All the hardware implementations
require negligible power consumption to stay in one of the two stable states
(Fusi et al., 2000; Indiveri, 2000, 2001, 2002; Mitra et al., 2006; Badoni,
Giulioni, Dante, & Del Giudice, 2006) and the bistable circuitry does not
require nonstandard technology or high voltage, as for the floating gates
(Diorio, Hasler, Minch, & Mead, 1996).

Given the possibility of implementing the synapse in VLSI and the good
performances obtained on the Latex data set, we believe that this synapse
is a perfect candidate for low-power, compact devices with on-chip au-
tonomous learning. Applications to the classification of real-world audi-
tory stimuli (e.g., spoken digits) are presented in (Coath, Brader, Fusi, &
Denham, 2005). They show that classification performances on classifica-
tion of the letters of the alphabet are comparable to those of humans. In
these applications, the input vectors are fully analog (i.e., sets of mean fir-
ing rates ranging in a given interval), showing the capability of our network
to encode these kinds of patterns as well.

6.5 Multiple Layer and Recurrent Networks. The studied architecture
is a single layer network. Our output neurons are essentially perceptrons,
which resemble the cerebellar Purkinje cells, as already proposed by Marr
(1969) and Albus (1971) (see Brunel, Hakim, Isope, Nadal, & Barbour, 2004,
for a recent work). Not only they are the constituents of a single-layer net-
work and have a large number of inputs, but they also receive a teacher
signal similar to what we have in our model. However, it is natural to ask
whether our synaptic dynamics can be applied also to a more complex mul-
tilayer network. If the instructor acts on all the layers, then it is likely that
the same synaptic dynamics can be adopted in the multilayer case. Other-
wise, if the instructor provides a bias only to the final layer, then it is unclear
whether learning would converge and whether the additional synapses of
the intermediate layers can be exploited to improve the performances. The
absence of a theory that guarantees the convergence does not necessary
imply that the learning rule would fail. Although simple counterexamples
probably can be constructed for networks of a few units, it is difficult to
predict what happens in more general cases.

More interesting is the case of recurrent networks in which the same
neuron can be regarded as both an input and an output unit. When learning
converges, then each pattern imposed by the instructor (which might be the
sensory stimulus) becomes a fixed point of the network dynamics. Given the
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capability of our network to generalize, it is very likely that the steady states
are also stable attractors. Networks in which not all the output neurons of
each class are activated would probably lead to attractors that are sparser
than the sensory representations. This behavior might be an explanation of
the small number of cells involved in attractors in inferotemporal cortex
(see Giudice et al., 2003).

6.6 Stochastic Learning and Boosting. Boosting is an effective strategy
to greatly improve classification performance by considering the “opinions”
of many weak classifiers. Most of the algorithms implementing boosting
start from deriving simple rules of thumb for classifying the full set of stim-
uli. A second classifier will concentrate more on those stimuli that were
most often misclassified by the previous rules of thumb. This procedure is
repeated many times, and in the end, a single classification rule is obtained
by combining the opinions of all the classifiers. Each opinion is weighted by
a quantity that depends on the classification performance on the training
set. In our case, we have two of the necessary ingredients to implement
boosting. First, each output unit can be regarded as a weak classifier that
concentrates on a subset of stimuli. When the stimuli are presented, only a
small fraction of randomly selected synapses changes. Our stimuli activate
only tens of neurons, and the transition probabilities are small (order of
10−2). The consequence is that some stimuli are actually ignored because
no synaptic change is consolidated. Second, each classifier concentrates on
the hardest stimuli. Indeed, only the stimuli that are misclassified induce
significant changes in the synaptic structure. For the others, the transition
probabilities are much smaller, and again, it is as if the stimulus is ignored.
In our model, each classifier does not know how the others are perform-
ing and which stimuli are misclassified by the other output units. So the
classification performances cannot be as good as in the case of boosting.
However, for difficult tasks, each output neuron changes continuously its
rules of thumb as the weights are stochastically updated. In general, each
output neuron feels the stop-learning condition for a different weight con-
figuration, and the aggregation of these different views often yields correct
classification of the stimuli. In fact our performances are very similar to
those of Amit and Mascaro (2001) when they use a boosting technique.
Notice that two factors play a fundamental role: stochastic learning and a
local stop-learning criterion. Indeed, each output unit should stop learning
when its own output matches the one desired by the instructor, not when the
stimulus is correctly classified by the majority rule. Otherwise the output
units cannot concentrate on different subsets of misclassified patterns.
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